Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4445, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915109

RESUMO

Iron is critical for host-pathogen interactions. While pathogens seek to scavenge iron to spread, the host aims at decreasing iron availability to reduce pathogen virulence. Thus, iron sensing and homeostasis are of particular importance to prevent host infection and part of nutritional immunity. While the link between iron homeostasis and immunity pathways is well established in plants, how iron levels are sensed and integrated with immune response pathways remains unknown. Here we report a receptor kinase SRF3, with a role in coordinating root growth, iron homeostasis and immunity pathways via regulation of callose synthases. These processes are modulated by iron levels and rely on SRF3 extracellular and kinase domains which tune its accumulation and partitioning at the cell surface. Mimicking bacterial elicitation with the flagellin peptide flg22 phenocopies SRF3 regulation upon low iron levels and subsequent SRF3-dependent responses. We propose that SRF3 is part of nutritional immunity responses involved in sensing external iron levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flagelina/metabolismo , Ferro/metabolismo , Proteínas Quinases/metabolismo
2.
Methods Mol Biol ; 2368: 61-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647248

RESUMO

The ability of roots to orient their growth relative to the vector of gravity, root gravitropism (positive gravitropism), is observed in root systems of higher plants and is an essential part of plant growth and development. While there are various methods for quantifying root gravitropism, many methods that can efficiently measure gravitropism at a reasonable throughput do not yield temporal resolution of the process, while methods that allow for high-temporal resolution are often not suitable for an efficient measurement of multiple roots. Here, we describe a method to analyze the root gravitropism activity at an increased throughput with a fine time-resolution using Arabidopsis thaliana plants.


Assuntos
Ágar , Arabidopsis , Proteínas de Arabidopsis , Gravitropismo , Raízes de Plantas
3.
Cell ; 178(2): 400-412.e16, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31299202

RESUMO

Root system architecture (RSA), the distribution of roots in soil, plays a major role in plant survival. RSA is shaped by multiple developmental processes that are largely governed by the phytohormone auxin, suggesting that auxin regulates responses of roots that are important for local adaptation. However, auxin has a central role in numerous processes, and it is unclear which molecular mechanisms contribute to the variation in RSA for environmental adaptation. Using natural variation in Arabidopsis, we identify EXOCYST70A3 as a modulator of the auxin system that causes variation in RSA by acting on PIN4 protein distribution. Allelic variation and genetic perturbation of EXOCYST70A3 lead to alteration of root gravitropic responses, resulting in a different RSA depth profile and drought resistance. Overall our findings suggest that the local modulation of the pleiotropic auxin pathway can gives rise to distinct RSAs that can be adaptive in specific environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Alelos , Apomorfina/análogos & derivados , Apomorfina/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Exocitose , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...