Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916582

RESUMO

The superconducting critical temperature of H3S ranks among the highest measured, at 203 K. This impressive value stems from a singularity in the electronic density-of-states, induced by a flat-band region that consists of saddle points. The peak sits right at the Fermi level, so that it gives rise to a giant electron-phonon coupling constant. In this work, we show how atomic orbital interactions and space group symmetry work in concert to shape the singularity. The body-centered cubic Brillouin Zone offers a unique 2D hypersurface in reciprocal space: fully connecting squares with two different high-symmetry points at the corners, Γ and H, and a third one in the center, N. Orbital mixing leads to the collapse of fully connected 1D saddle point lines around the square centers, due to a symmetry-enforced s-p energy inversion between Γ and H. The saddle-point states are invariably nonbonding, which explains the unconventionally weak response of the superconductor's critical temperature to pressure. Although H3S appears to be a unique case, the theory shows how it is possible to engineer flat bands and singularities in 3D lattices through symmetry considerations.

2.
J Am Chem Soc ; 144(8): 3398-3410, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174711

RESUMO

Simple arguments based on orbital energies and crystal symmetry suggest the band gap of CsTaS3 to be suitable for solar cell photovoltaics. Here, we combine chemical theory with sophisticated calculations to describe an intricate relationship between the structure and optical properties of this material. Orbital interactions govern both the presence and nature of CsTaS3's gap. In the first place, through a second-order Jahn-Teller (JT) distortion, which slides the Ta ion along the axial direction of TaS3 chains. This displacement creates a gap that remains direct in the face of minor distortions. Using an advanced methodology, compressive sensing lattice dynamics, we compute the anharmonic interatomic force constants up to the fourth order and use them to renormalize the phonons at finite temperatures. This analysis predicts CsTaS3 to undergo the JT metal-to-semiconductor transition at temperatures below 1000 K. At around room temperature, we find a second distortion that moves the Ta ion along the equatorial direction of the TaS3 chains, giving rise to many possible supercell conformations. By relaxing all symmetry-inequivalent structures with Ta ion displacements, in supercells with up to 12 formula units, we obtain 204 symmetrically distinct conformations and sort them by energy and (direct) band gap magnitude. Since all structures with a gap lie within an energy range of 30 meV/Ta above the ground state, we expect CsTaS3's optical properties to be controlled by the full polymorphic ensemble of gapped conformations. Using the GW-Bethe-Salpeter approach, we predict a band gap of 1.3-1.4 eV as well as potent absorption in the visible range.

3.
Angew Chem Int Ed Engl ; 61(4): e202114303, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34687576

RESUMO

Beryllium, an s-block element, forms an aromatic network of delocalized Be-Be π bonds in alloys ZrBe2 and HfBe2 . This gives rise to stacked [Be2 ]4- layers with tetravalent cations in between. The [Be2 ]4- sublattice is isoelectronic and isostructural to graphite, as well as the [B]-2 sublattice in MgB2 , and it bears identical manifestations of π bonding in its electronic band structure. These come in the form of degeneracies at K and H in the Brillouin zone, separated in energy as the result of interlayer orbital interactions. Zr and Hf use their valence d orbitals to form bonds with the layers, leading to nearly identical band structures. Like MgB2 , ZrBe2 and HfBe2 are computed to be phonon-mediated superconductors at ambient pressures, with respective critical temperatures of 11.4 K and 8.8 K. The coupling strength between phonons and free electrons is very similar, so that the difference in critical temperatures is controlled by the mass of constituent interlayer ions.

4.
Angew Chem Int Ed Engl ; 60(50): 26038-26052, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34213064

RESUMO

In the realm of solids, metal-organic frameworks (MOFs) offer unique possibilities for the rational engineering of tailored physical properties. These derive from the modular, molecular make-up of MOFs, which allows for the selection and modification of the organic and inorganic building units that construct them. The adaptable properties make MOFs interesting materials for photocatalysis, an area of increasing significance. But the molecular and porous nature of MOFs leaves the field, in some areas, juxtapositioned between semiconductor physics and homogeneous photocatalysis. While descriptors from both fields are applied in tandem, the gap between theory and experiment has widened in some areas, and arguably needs fixing. Here we review where MOFs have been shown to be similar to conventional semiconductors in photocatalysis, and where they have been shown to be more like infinite molecules in solution. We do this from the perspective of band theory, which in the context of photocatalysis, covers both the molecular and nonmolecular principles of relevance.

5.
Angew Chem Int Ed Engl ; 59(32): 13468-13472, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32315516

RESUMO

The one-step synthesis and characterization of a new and robust titanium-based metal-organic framework, ACM-1, is reported. In this structure, which is based on infinite Ti-O chains and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl) tetrabenzoic acid as a photosensitizer ligand, the combination of highly mobile photogenerated electrons and a strong hole localization at the organic linker results in large charge-separation lifetimes. The suitable energies for band gap and conduction band minimum (CBM) offer great potential for a wide range of photocatalytic reactions, from hydrogen evolution to the selective oxidation of organic substrates.

6.
J Am Chem Soc ; 140(40): 12996-13010, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30207152

RESUMO

We explore the chemical bonding and band gap in the metal halide perovskites ABX3 (where A is a cation, B a metal dication, and X a halide) through detailed calculations and a qualitative, symmetry-based bonding analysis that moves between chemical and physical viewpoints, covering every aspect of bonding over a range of 15 eV around the band gap. We show how the gap is controlled by metal-halide orbital interactions that give rise to a characteristic mirror of bands, a bonding signpost which first shows up in turning on and off the scalar relativistic effects in computation of the band structure of CsPbBr3. The mirror is made up by a Pb 6s and Br 4p combination that moves in an understandable way through the Brillouin zone, setting the valence band maximum. The mirror is also there when the A cation is changed to an organocation and is robust enough to persist through moderate distortions of the lattice. The analysis predicts how a modification of Pb2+ to Sn2+ and Ge2+ and a variation of the halide X influence the band gap. In describing in equal detail the lowest three conduction bands, a second mirror of bonding emerges. For CsPbBr3, this mirror is made up by Pb 6p and Br 4p combinations. An understanding of the way these combinations move in reciprocal space to set the conduction band minimum allows us to see why the band gap is direct. The orbital analysis provides a chemical and intuitive picture of band gap engineering in this popular class of materials.

7.
Adv Mater ; 30(26): e1707234, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29774609

RESUMO

During the last decade, the synthesis and application of metal-organic framework (MOF) nanosheets has received growing interest, showing unique performances for different technological applications. Despite the potential of this type of nanolamellar materials, the synthetic routes developed so far are restricted to MOFs possessing layered structures, limiting further development in this field. Here, a bottom-up surfactant-assisted synthetic approach is presented for the fabrication of nanosheets of various nonlayered MOFs, broadening the scope of MOF nanosheets application. Surfactant-assisted preorganization of the metallic precursor prior to MOF synthesis enables the manufacture of nonlayered Al-containing MOF lamellae. These MOF nanosheets are shown to exhibit a superior performance over other crystal morphologies for both chemical sensing and gas separation. As revealed by electron microscopy and diffraction, this superior performance arises from the shorter diffusion pathway in the MOF nanosheets, whose 1D channels are oriented along the shortest particle dimension.

8.
Angew Chem Int Ed Engl ; 56(33): 9772-9776, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28643352

RESUMO

The Td -symmetric [CsO4 ]+ ion, featuring Cs in an oxidation state of 9, is computed to be a minimum. Cs uses outer core 5s and 5p orbitals to bind the oxygen atoms. The valence Cs 6s orbital lies too high to be involved in bonding, and contributes to Rydberg levels only. From a molecular orbital perspective, the bonding scheme is reminiscent of XeO4 : an octet of electrons to bind electronegative ligands, and no low-lying acceptor orbitals on the central atom. In this sense, Cs+ resembles hypervalent Xe.

9.
Chem Mater ; 29(9): 4091-4096, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28539702

RESUMO

Hierarchical ZSM-5 zeolite is hydrothermally synthesized in a single step with cetyltrimethylammonium (CTA) hydroxide acting as mesoporogen and structure-directing agent. Essential to this synthesis is the replacement of NaOH with KOH. An in-depth solid-state NMR study reveals that, after early electrostatic interaction between condensed silica and the head group of CTA, ZSM-5 crystallizes around the structure-directing agent. The crucial aspect of using KOH instead of NaOH lies in the faster dissolution of silica, thereby providing sufficient nutrients for zeolite nucleation. The hierarchical ZSM-5 zeolite contains mesopores and shows excellent catalytic performance in the methanol-to-hydrocarbons reaction.

10.
Angew Chem Int Ed Engl ; 56(19): 5160-5163, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28378440

RESUMO

Zeolite synthesis: In a Communication published in this journal in early 2015, Messinger, Na, Seo, Ryoo, and Chmelka (MNSRC) claim that the formation of zeolite MFI nanosheets proceeds through an intermediate, crystalline layered silicate phase. It is now proposed that the layered silicate phase in the MNSRC work is an artefact rather than a species possibly playing a significant role in MFI nanosheet formation.

11.
Proc Natl Acad Sci U S A ; 114(5): 828-833, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096342

RESUMO

Fluoride, nature's smallest anion, is capable of covalently coordinating to eight silicon atoms. The setting is a simple and common motif in zeolite chemistry: the box-shaped silicate double-four-ring (D4R). Fluoride seeks its center. It is the strain of box deformation that keeps fluoride in the middle of the box, and freezes what would be a transition state in its absence. Hypervalent bonding ensues. Fluoride's compactness works to its advantage in stabilizing the cage; chloride, bromide, and iodide do not bring about stabilization due to greater steric repulsion with the box frame. The combination of strain and hypervalent bonding, and the way they work in concert to yield this unusual case of multiple hypervalence, has potential for extension to a broader range of solid-state compounds.

12.
Chem Commun (Camb) ; 52(51): 7986-9, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27257634

RESUMO

A supramolecular strategy based on strong molecular dipole moments is presented to gain access to covalent organic framework structures with high crystallinity and porosity. Antiparallel alignment of the molecules within the pore walls is proposed to lead to reinforced columnar stacking, thus affording a high-quality material. As a proof of principle, a novel pyrene dione building block was prepared and reacted with hexahydroxytriphenylene to form a boronic ester-linked covalent organic framework. We anticipate the strategy presented herein to be valuable for producing highly defined COF structures.

13.
Chem Sci ; 7(10): 6506-6513, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28616128

RESUMO

In applying a multi-scale spectroscopic and computational approach, we demonstrate that the synthesis of stacked zeolite silicalite-1 nanosheets, in the presence of a long-tail diquaternary ammonium salt surfactant, proceeds through a pre-organised phase in the condensed state. In situ small-angle X-ray scattering, coupled to paracrystalline theory, and backed by electron microscopy, shows that this phase establishes its meso-scale order within the first five hours of hydrothermal synthesis. Quasi in situ vibrational and solid-state NMR spectroscopy reveal that this meso-shaped architecture already contains some elementary zeolitic features. The key to this coupled organisation at both micro- and meso-scale, is a structure-directing agent that is ambifunctional in shaping silica at the meso-scale whilst involved in molecular recognition at the micro-scale. The latter feature is particularly important and requires the structure-directing agent to reside within the silica matrix already at early stages of the synthesis. From here, molecular recognition directs stabilization of precursor species and their specific embedding into a lattice, as shown by force-field molecular dynamics calculations. These calculations, in line with experiment, further show how it is possible to subtly tune both the zeolite topology and aspect ratio of the condensating crystals, by modifying the headgroup of the structure-directing agent.

14.
Angew Chem Int Ed Engl ; 54(41): 12034-8, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26266966

RESUMO

Bonding in six-coordinate complexes based on Group 13 elements (B, Al, Ga, In, Tl) is usually considered to be identical to that in transition-metal analogues. We herein demonstrate through sophisticated electronic-structure analyses that the bonding in these Group 13 element complexes is fundamentally different and better characterized as electron-rich hypervalent bonding with essentially no role for the d orbitals. This characteristic is carried through to the molecular properties of the complex.

15.
Chem Commun (Camb) ; 51(5): 961-2, 2015 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-25488120

RESUMO

Correction for 'Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis' by Maxim A. Nasalevich et al., Chem. Commun., 2013, 49, 10575-10577.

16.
Inorg Chem ; 53(2): 882-7, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24405155

RESUMO

In situ NMR and DFT modeling demonstrate that N,N-dimethylformamide (DMF) promotes the formation of metal-organic framework NH2-MIL-101(Al). In situ NMR studies show that upon dissociation of an aluminum-coordinated aqua ligand in NH2-MOF-235(Al), DMF forms a H-Cl-DMF complex during synthesis. This reaction induces a transformation from the MOF-235 topology into the MIL-101 topology. Electronic structure density functional theory (DFT) calculations show that the use of DMF instead of water as the synthesis solvent decreases the energy gap between the kinetically favored MIL-101 and thermodynamically favored MIL-53 products. DMF therefore promotes MIL-101 topology both kinetically and thermodynamically.

17.
Chem Commun (Camb) ; 49(90): 10575-7, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24091538

RESUMO

NH2-MIL-125(Ti) has been post-synthetically functionalized with dye-like molecular fragments. The new material (methyl red-MIL-125(Ti)) exhibits improved light absorption over a wide range of the visible spectrum, and shows enhanced photocatalytic oxidation activity under visible light illumination. The consequences of functionalization and the bottlenecks in MOF photochemistry are studied in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...