Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754493

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a widely recognized environment pollutant known for its high bioaccumulation potential and a long elimination half-life. Several studies have shown that PFOS can alter multiple biological pathways and negatively affect human health. Considering the direct exposure to the gastrointestinal (GI) tract to environmental pollutants, PFOS can potentially disrupt intestinal homeostasis. However, there is limited knowledge about the effect of PFOS exposure on normal intestinal tissues, and its contribution to GI-associated diseases remains to be determined. In this study, we examined the effect of PFOS exposure on the gene expression profile of intestinal tissues of C57BL/6 mice using RNAseq analysis. We found that PFOS exposure in drinking water significantly downregulates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme, in intestinal tissues of mice. We found that diets containing the soluble fibers inulin and pectin, which are known to be protective against PFOS exposure, were ineffective in reversing the downregulation of HMGCS2 expression in vivo. Analysis of intestinal tissues also demonstrated that PFOS exposure leads to upregulation of proteins implicated in colorectal carcinogenesis, including ß-catenin, c-MYC, mTOR and FASN. Consistent with the in vivo results, PFOS exposure leads to downregulation of HMGCS2 in mouse and human normal intestinal organoids in vitro. Furthermore, we show that shRNA-mediated knockdown of HMGCS2 in a human normal intestinal cell line resulted in increased cell proliferation and upregulation of key proliferation-associated proteins such as cyclin D, survivin, ERK1/2 and AKT, along with an increase in lipid accumulation. In summary, our results suggest that PFOS exposure may contribute to pathological changes in normal intestinal cells via downregulation of HMGCS2 expression and upregulation of pro-carcinogenic signaling pathways that may increase the risk of colorectal cancer development.


Assuntos
Ácidos Alcanossulfônicos , Carcinogênese , Regulação para Baixo , Fluorocarbonos , Hidroximetilglutaril-CoA Sintase , Camundongos Endogâmicos C57BL , Animais , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Camundongos , Regulação para Baixo/efeitos dos fármacos , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Regulação para Cima/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Intestinos/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32998869

RESUMO

INTRODUCTION: Adenosine, 5'-Se-methyl-5'-seleno-,2',3'-diacetate (NPC43) is a recently identified small, non-peptidyl molecule which restores normal insulin signaling in a mouse model of type 2 diabetes (Lan et al). The present study investigated the ability of NPC43 as an oral and injectable insulin-replacing agent to activate insulin receptor (INSR) and counter hyperglycemia in streptozotocin (STZ)-induced type 1 diabetic (T1D) mice. RESEARCH DESIGN AND METHODS: In this study, STZ was intraperitoneally injected into wild-type mice to induce hyperglycemia and hypoinsulinemia, the main features of T1D. These STZ-induced T1D mice were given NPC43 orally or intraperitoneally and blood glucose levels were measured using a glucometer. Protein levels of phosphorylated and total Insrß, protein kinase B (Akt) and AS160 (critical for glucose uptake) in the skeletal muscle and liver of STZ-induced T1D mice following oral NPC43 treatment were determined by western blot analysis. In addition, hepatic expression of activated Insr in STZ-induced T1D mice after intraperitoneal NPC43 treatment was measured by ELISA. Student's t-test was used for statistical analysis. RESULTS: Oral administration of NPC43 at a dose of 5.4 or 10.8 mg/kg body weight (mpk) effectively lowered blood glucose levels in STZ-induced T1D mice at ≥1 hour post-treatment and the glucose-lowering activity of oral NPC43 persisted for 5 hours. Blood glucose levels were also reduced in STZ-induced T1D mice following intraperitoneal NPC43 (5.4 mpk) treatment. Protein levels of phosphorylated Insrß, Akt and AS160 were significantly increased in the skeletal muscle and liver of STZ-induced T1D mice after oral NPC43 (5.4 mpk) treatment. In addition, activation of hepatic Insr was observed in STZ-induced T1D mice following intraperitoneal NPC43 (5.4 mpk) treatment. CONCLUSIONS: We conclude that NPC43 is a de facto fast-acting oral and injectable insulin mimetic which activates Insr and mitigates hyperglycemia in a mouse model of T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hiperglicemia , Administração Oral , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Camundongos , Receptor de Insulina/uso terapêutico , Estreptozocina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...