Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 121: 108433, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36812742

RESUMO

Overexpression of the Phosphatidylinositol 3-kinase (PI3K) proteins have been observed in cancer cells. Targeting the phosphatidylinositol 3-kinase (PI3K) signaling transduction pathway by inhibition of the PI3K substrate recognition sites has been proved to be an effective approach to block cancer progression. Many PI3K inhibitors have been developed. Seven drugs have been approved by the US FDA with a mechanism of targeting the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. In this study, we used docking tools to investigate selective binding of ligands toward four different subtypes of PI3Ks (PI3Kα, PI3Kß, PI3Kγ and PI3Kδ). The affinity predicted from both the Glide dock and the Movable-Type (MT)-based free energy calculations agreed well with the experimental data. The validation of our predicted methods with a large dataset of 147 ligands showed very small mean errors. We identified residues that may dictate the subtype-specific binding. Particularly, residues Asp964, Ser806, Lys890 and Thr886 of PI3Kγ might be utilized for PI3Kγ-selective inhibitor design. Residues Val828, Trp760, Glu826 and Tyr813 may be important for PI3Kδ-selective inhibitor binding.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais
2.
Biomark Med ; 16(12): 889-901, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35892269

RESUMO

Aims: To combat increases in colorectal cancer (CRC) incidence and mortality, biomarkers among differentially expressed genes (DEGs) have been identified to objectively detect cancer. However, DEGs are numerous, and additional parameters may identify more reliable biomarkers. Here, CRC DEGs were filtered into a prioritized list of biomarkers. Materials & methods: Two independent datasets (COAD-READ [n = 698] and GSE50760 [n = 36]) were input alternatively to the recently published data-driven reference method. Results were filtered based on epithelial-mesenchymal transition enrichment (χ-square statistic: 919.05; p = 2.2e-16) to produce 37 potential CRC biomarkers. Results: All 37 genes reliably classified CRC samples and ETV4, CLDN1 and CA2 together were top-ranked by DDR (accuracy: 89%; F1 score: 0.89). Conclusion: Biological and statistical information were combined to produce a better set of CRC detection biomarkers.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos
3.
DNA Repair (Amst) ; 21: 12-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25091156

RESUMO

Replication protein A (RPA) is the main human single-stranded DNA (ssDNA)-binding protein. It is essential for cellular DNA metabolism and has important functions in human cell cycle and DNA damage signaling. RPA is indispensable for accurate homologous recombination (HR)-based DNA double-strand break (DSB) repair and its activity is regulated by phosphorylation and other post-translational modifications. HR occurs only during S and G2 phases of the cell cycle. All three subunits of RPA contain phosphorylation sites but the exact set of HR-relevant phosphorylation sites on RPA is unknown. In this study, a high resolution capillary isoelectric focusing immunoassay, used under native conditions, revealed the isoforms of the RPA heterotrimer in control and damaged cell lysates in G2. Moreover, the phosphorylation sites of chromatin-bound and cytosolic RPA in S and G2 phases were identified by western and IEF analysis with all available phosphospecific antibodies for RPA2. Strikingly, most of the RPA heterotrimers in control G2 cells are phosphorylated with 5 isoforms containing up to 7 phosphates. These isoforms include RPA2 pSer23 and pSer33. DNA damaged cells in G2 had 9 isoforms with up to 14 phosphates. DNA damage isoforms contained pSer4/8, pSer12, pThr21, pSer23, and pSer33 on RPA2 and up to 8 unidentified phosphorylation sites.


Assuntos
Dano ao DNA , Fase G2 , Proteína de Replicação A/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Cromatina/metabolismo , Citoplasma/metabolismo , Humanos , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Proteína de Replicação A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...