Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109912, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38974465

RESUMO

Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.

2.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292716

RESUMO

Among the signaling pathways that control the stem cell self-renewal and maintenance vs. acquisition of differentiated cell fates, those mediated by receptor tyrosine kinase (RTK) activation are well established as key players. CBL family ubiquitin ligases are negative regulators of RTKs but their physiological roles in regulating stem cell behaviors are unclear. While hematopoietic Cbl/Cblb knockout (KO) leads to a myeloproliferative disease due to expansion and reduced quiescence of hematopoietic stem cells, mammary epithelial KO led to stunted mammary gland development due to mammary stem cell depletion. Here, we examined the impact of inducible Cbl/Cblb double-KO (iDKO) selectively in the Lgr5-defined intestinal stem cell (ISC) compartment. Cbl/Cblb iDKO led to rapid loss of the Lgr5 Hi ISC pool with a concomitant transient expansion of the Lgr5 Lo transit amplifying population. LacZ reporter-based lineage tracing showed increased ISC commitment to differentiation, with propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro , Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single cell RNAseq analysis of organoids revealed Akt-mTOR pathway hyperactivation in iDKO ISCs and progeny cells, and pharmacological inhibition of the Akt-mTOR axis rescued the organoid maintenance and propagation defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.

3.
PLoS One ; 17(9): e0273518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36126055

RESUMO

The histone deacetylase (HDAC) inhibitor vorinostat, used with gemcitabine and other therapies, has been effective in treatment of experimental models of pancreatic cancer. In this study, we demonstrated that M344, an HDAC inhibitor, is efficacious against pancreatic cancer in vitro and in vivo, alone or with gemcitabine. By 24 hours post-treatment, M344 augments the population of pancreatic cancer cells in G1, and at a later time point (48 hours) it increases apoptosis. M344 inhibits histone H3 deacetylation and slows pancreatic cancer cell proliferation better than vorinostat, and it does not decrease the viability of a non-malignant cell line more than vorinostat. M344 also elevates pancreatic cancer cell major histocompatibility complex (MHC) class I molecule expression, potentially increasing the susceptibility of pancreatic cancer cells to T cell lysis. Taken together, our findings support further investigation of M344 as a pancreatic cancer treatment.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Vorinostat/farmacologia , Neoplasias Pancreáticas
4.
J Control Release ; 327: 266-283, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32711026

RESUMO

Neuroblastoma is the most commonly diagnosed extracranial solid tumor in children. The patients with aggressive metastatic disease or refractory/relapsed neuroblastoma currently face a dismally low chance of survival. Thus, there is a great need for more effective therapies for this illness. In previous studies, we, as well as others, showed that the immune cell chemoattractant C-C motif chemokine ligand 21 (CCL21) is effective as an intratumoral therapy able to slow the growth of cancers. In this current study, we developed and tested an injectable, slow-release, uniform, and optimally loaded alginate nanoformulation of CCL21 as a means to provide prolonged intratumoral treatment. The alginate-nanoformulated CCL21, when injected intratumorally into mice bearing neuroblastoma lesions, significantly prolonged survival and decreased the tumor growth rate compared to CCL21 alone, empty nanoparticles, or buffer. Notably, we also observed complete tumor clearance and subsequent full protection against tumor rechallenge in 33% of nanoformulated CCL21-treated mice. Greater intratumoral presence of nanoformulated CCL21, compared to free CCL21, at days 1 and 2 after treatment ended was confirmed through fluorescent labeling and tracking. Nanoformulated CCL21-treated tumors exhibited a general pattern of prolonged increases in anti-tumor cytokines and relatively lower levels of pro-tumor cytokines in comparison to tumors treated with CCL21 alone or buffer only. Thus, this novel nanoformulation of CCL21 is an effective treatment for neuroblastoma, and may have potential for the delivery of CCL21 to other types of solid tumors in the future and as a slow-release delivery modality for other immunotherapies.


Assuntos
Quimiocina CCL21 , Neuroblastoma , Animais , Linhagem Celular Tumoral , Quimiocina CCL21/uso terapêutico , Humanos , Imunoterapia , Ligantes , Camundongos , Neuroblastoma/tratamento farmacológico
5.
Exp Cell Res ; 390(2): 111960, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32194036

RESUMO

Human leukocyte antigen (HLA) class I molecules present antigenic peptides to cytotoxic T cells, causing lysis of malignant cells. Transplantation biology studies have implicated HLA class I molecules in cell migration, but there has been little evidence presented that they influence cancer cell migration, a contributing factor in metastasis. In this study, we examined the effect of HLA-B on pancreatic cancer cell migration. HLA-B siRNA transfection increased the migration of the S2-013 pancreatic cancer cells but, in contrast, reduced migration of the PANC-1 and MIA PaCa-2 pancreatic cancer cell lines. Integrin molecules have previously been implicated in the upregulation of pancreatic cancer cell migration, and knockdown of HLA-B in S2-013 cells heightened the expression of integrin beta 1 (ITGB1), but in the PANC-1 and MIA PaCa-2 cells HLA-B knockdown diminished ITGB1 expression. A transmembrane sequence in an S2-013 HLA-B heavy chain matches a corresponding sequence in HLA-B in the BxPC-3 pancreatic cancer cell line, and knockdown of BxPC-3 HLA-B mimics the effect of S2-013 HLA-B knockdown on migration. In total, our findings indicate that HLA-B influences the expression of ITGB1 in pancreatic cancer cells, with concurrent distinctions in transmembrane sequences and effects on the migration of the cells.


Assuntos
Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Antígenos HLA-B/genética , Integrina beta1/genética , Pâncreas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Antígenos HLA-B/metabolismo , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Integrina beta1/metabolismo , Especificidade de Órgãos , Pâncreas/patologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
6.
Mol Cell Biol ; 40(7)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31932478

RESUMO

Epidermal growth factor receptor (EGFR) is a prototype receptor tyrosine kinase and an oncoprotein in many solid tumors. Cell surface display of EGFR is essential for cellular responses to its ligands. While postactivation endocytic trafficking of EGFR has been well elucidated, little is known about mechanisms of basal/preactivation surface display of EGFR. Here, we identify a novel role of the endocytic regulator EHD1 and a potential EHD1 partner, RUSC2, in cell surface display of EGFR. EHD1 and RUSC2 colocalize with EGFR in vesicular/tubular structures and at the Golgi compartment. Inducible EHD1 knockdown reduced the cell surface EGFR expression with accumulation at the Golgi compartment, a phenotype rescued by exogenous EHD1. RUSC2 knockdown phenocopied the EHD1 depletion effects. EHD1 or RUSC2 depletion impaired the EGF-induced cell proliferation, demonstrating that the novel, EHD1- and RUSC2-dependent transport of unstimulated EGFR from the Golgi compartment to the cell surface that we describe is functionally important, with implications for physiologic and oncogenic roles of EGFR and targeted cancer therapies.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Receptores ErbB/metabolismo , Humanos , Camundongos , Transporte Proteico/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Transporte Vesicular/genética
7.
Cancer Biol Ther ; 20(6): 931-940, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30810435

RESUMO

Beta 2-microglobulin (ß2m) is a component of the major histocompatibility complex (MHC) class I molecule, which presents tumor antigens to T lymphocytes to trigger cancer cell destruction. Notably, ß2m has been reported as persistently expressed, rather than down regulated, in some tumor types. For renal cell and oral squamous cell carcinomas, ß2m expression has been linked to increased migratory capabilities. The migratory ability of pancreatic cancer cells contributes to their metastatic tendencies and lethal nature. Therefore, in this study, we examined the impact of ß2m on pancreatic cancer cell migration. We found that ß2m protein is amply expressed in several human pancreatic cancer cell lines (S2-013, PANC-1, and MIA PaCa-2). Reducing ß2m expression by short interfering RNA (siRNA) transfection significantly slowed the migration of the PANC-1 and S2-013 cancer cell lines, but increased the migration of the MIA PaCa-2 cell line. The amyloid precursor-like protein 2 (APLP2) has been documented as contributing to pancreatic cancer cell migration, invasiveness, and metastasis. We have previously shown that ß2m/HLA class I/peptide complexes associate with APLP2 in S2-013 cells, and in this study we also detected their association in PANC-1 cells but not MIA PaCa-2 cells. In addition, siRNA down regulation of ß2m expression diminished the expression of APLP2 in S2-013 and PANC-1 but heightened the level of APLP2 in MIA PaCa-2 cells, consistent with our migration data and co-immunoprecipitation data. Thus, our findings indicate that ß2m regulates pancreatic cancer cell migration, and furthermore suggest that APLP2 is an intermediary in this process.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Movimento Celular/genética , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/genética , Microglobulina beta-2/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Microglobulina beta-2/metabolismo
8.
J Immunol ; 200(2): 483-499, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29212907

RESUMO

T cells use the endocytic pathway for key cell biological functions, including receptor turnover and maintenance of the immunological synapse. Some of the established players include the Rab GTPases, the SNARE complex proteins, and others, which function together with EPS-15 homology domain-containing (EHD) proteins in non-T cell systems. To date, the role of the EHD protein family in T cell function remains unexplored. We generated conditional EHD1/3/4 knockout mice using CD4-Cre and crossed these with mice bearing a myelin oligodendrocyte glycoprotein-specific TCR transgene. We found that CD4+ T cells from these mice exhibited reduced Ag-driven proliferation and IL-2 secretion in vitro. In vivo, these mice exhibited reduced severity of experimental autoimmune encephalomyelitis. Further analyses showed that recycling of the TCR-CD3 complex was impaired, leading to increased lysosomal targeting and reduced surface levels on CD4+ T cells of EHD1/3/4 knockout mice. Our studies reveal a novel role of the EHD family of endocytic recycling regulatory proteins in TCR-mediated T cell functions.


Assuntos
Endocitose , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Ativação Linfocitária , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Família Multigênica , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Transporte Proteico , Proteólise , Proteínas de Transporte Vesicular/genética
9.
Genes Dev ; 31(10): 1007-1023, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28611190

RESUMO

Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b Importantly, primary human CBL mutated (CBLmut ) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies.


Assuntos
Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/fisiopatologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Citocinas/metabolismo , Estabilidade Enzimática , Células-Tronco Hematopoéticas/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinase 2/genética , Leucemia Mieloide Aguda/genética , Proteínas de Membrana , Camundongos , Mutação , Proteólise , Proteínas Proto-Oncogênicas c-cbl/genética , Transdução de Sinais/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...