Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(9): 2839-2845, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38395430

RESUMO

Semiconductor quantum dots are promising candidates for the generation of nonclassical light. Coupling a quantum dot to a device capable of providing polarization-selective enhancement of optical transitions is highly beneficial for advanced functionalities, such as efficient resonant driving schemes or applications based on optical cyclicity. Here, we demonstrate broadband polarization-selective enhancement by coupling a quantum dot emitting in the telecom O-band to an elliptical bullseye resonator. We report bright single-photon emission with a degree of linear polarization of 96%, Purcell factor of 3.9 ± 0.6, and count rates up to 3 MHz. Furthermore, we present a measurement of two-photon interference without any external polarization filtering. Finally, we demonstrate compatibility with compact Stirling cryocoolers by operating the device at temperatures up to 40 K. These results represent an important step toward practical integration of optimal quantum dot photon sources in deployment-ready setups.

2.
Nanotechnology ; 33(48)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35977453

RESUMO

Remote epitaxy is an emerging materials synthesis technique which employs a 2D interface layer, often graphene, to enable the epitaxial deposition of low defect single crystal films while restricting bonding between the growth layer and the underlying substrate. This allows for the subsequent release of the epitaxial film for integration with other systems and reuse of growth substrates. This approach is applicable to material systems with an ionic component to their bonding, making it notably appealing for III-V alloys, which are a technologically important family of materials. Chemical vapour deposition growth of graphene and wet transfer to a III-V substrate with a polymer handle is a potentially scalable and low cost approach to producing the required growth surface for remote epitaxy of these materials, however, the presence of water promotes the formation of a III-V oxide layer, which degrades the quality of subsequently grown epitaxial films. This work demonstrates the use of an argon ion beam for the controlled introduction of defects in a monolayer graphene interface layer to enable the growth of a single crystal GaAs film by molecular beam epitaxy, despite the presence of a native oxide at the substrate/graphene interface. A hybrid mechanism of defect seeded lateral overgrowth with remote epitaxy contributing the coalescence of the film is indicated. The exfoliation of the GaAs films reveals the presence of defect seeded nucleation sites, highlighting the need to balance the benefits of defect seeding on crystal quality against the requirement for subsequent exfoliation of the film, for future large area development of this approach.

3.
ACS Omega ; 2(10): 7275-7280, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457302

RESUMO

The measurement of ζ potential of Ga-face and N-face gallium nitride has been carried out as a function of pH. Both of the faces show negative ζ potential in the pH range 5.5-9. The Ga-face has an isoelectric point at pH 5.5. The N-face shows a more negative ζ potential due to larger concentration of adsorbed oxygen. The ζ potential data clearly showed that H-terminated diamond seed solution at pH 8 will be optimal for the self-assembly of a monolayer of diamond nanoparticles on the GaN surface. The subsequent growth of thin diamond films on GaN seeded with H-terminated diamond seeds produced fully coalesced films, confirming a seeding density in excess of 1011 cm-2. This technique removes the requirement for a low thermal conduction seeding layer like silicon nitride on GaN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...