Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38927269

RESUMO

The response of benthic habitats and organisms to bottom-contact fishing intensity is investigated in marine protected areas (MPAs) of the German EEZ in the North and Baltic Seas. We examined the current state of macrofauna biodiversity in 2020-2022. Comparative analysis for macrofauna (in- and epifauna) inhabiting nine Natura 2000 MPAs constitutes a baseline to assess the effects of bottom-contact fishing exclusion in the future. Aspects of spatial and temporal variability are briefly summarized and discussed. We provide a species list for each region, including 481 taxa, of which 79 were found in both regions, 183 only in the North Sea, and 219 only in the Baltic Sea. The Baltic Sea dataset surprisingly included higher numbers of taxa and revealed more Red List species. The share of major taxonomic groups (polychaetes, bivalves and amphipods) in species richness showed peculiar commonalities between the two regions. In the North Sea, multivariate analysis of community structure revealed significantly higher within-similarity and stronger separation between the considered MPAs compared to the Baltic MPAs. Salinity, temperature and sediment fractions of sand were responsible for over 60% of the variation in the North Sea macrofauna occurrence data. Salinity, mud fraction and bottom-contact fishing were the most important drivers in the Baltic Sea and, together with other considered environmental drivers, were responsible for 53% of the variation. This study identifies aspects of macrofauna occurrence that may be used to assess (causes of) future changes.

2.
Biology (Basel) ; 12(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372109

RESUMO

Many studies show that habitat complexity or habitat diversity plays a major role in biodiversity throughout different spatial scales: as structural heterogeneity increases, so does the number of available (micro-) habitats for the potential species inventory. The capability of housing species (even rare species) increases rapidly with increasing habitat heterogeneity. However, habitat complexity is not easy to measure in marine sublittoral sediments. In our study, we came up with a proposal to estimate sublittoral benthic habitat complexity using standard underwater video techniques. This tool was subsequently used to investigate the effect of habitat complexity on species richness in comparison to other environmental parameters in a marine protected area situated in the Fehmarn Belt, a narrow strait in the southwestern Baltic Sea. Our results show that species richness is significantly higher in heterogeneous substrates throughout all considered sediment types. Congruently, the presence of rare species increases with structural complexity. Our findings highlight the importance of the availability of microhabitats for benthic biodiversity as well as of the study area for regional ecosystem functioning.

3.
Biology (Basel) ; 11(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36101463

RESUMO

Benthic community bioirrigation potential (BIPc), an index developed to quantify the anticipated capacity of macrofauna to influence the solute exchange at the sediment-water interface, was calculated for the south-western Baltic Sea. This index can be regarded as an effect trait that is useful for predicting ecosystem processes impacted by animal burrow ventilation. The special feature, and presumably an advantage, of BIPc, compared to alternative recently developed benthic macrofauna-based bioirrigation indices, lies in its ability to distinguish the taxa-specific score values between diffusion- and advection-dominated sediment systems. The usefulness of the BIPc index was compared against the estimates of the well-established community bioturbation potential index (BPc). The BIPc index displayed a moderately but significantly stronger correlation with estimates of irrigation rates derived from tracer experiments. Using a random forest machine learning approach and a number of available relevant environmental predictor layers, we have modelled and mapped the spatial differences in this ecosystem functioning expression. The key species contributing to bioirrigation potential in the study area were identified. The interannual variation in BIPc was assessed on a small exemplary dataset. The scores required to calculate the index, that were assigned to 120 taxa dominating abundance and biomass in the region, are provided for reuse. The utility, temporal variability and uncertainty of the distribution estimate are discussed.

4.
Mar Pollut Bull ; 121(1-2): 5-15, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28502451

RESUMO

Hard-bottom habitats with complex topography and fragile epibenthic communities are still not adequately considered in benthic monitoring programs, despite their potential ecological importance. While indicators of ecosystem health are defined by major EU directives, methods commonly used to measure them are deficient in quantification of biota on hard surfaces. We address the suitability of seafloor imaging for monitoring activities. We compared the ability of high-resolution imagery and physical sampling methods (grab, dredge, SCUBA-diving) to detect taxonomic and functional components of epibenthos. Results reveal that (1) with minimal habitat disturbance on large spatial scales, imagery provides valuable, cost-effective assessment of rocky reef habitat features and community structure, (2) despite poor taxonomic resolution, image-derived data for habitat-forming taxa might be sufficient to infer richness of small sessile and mobile fauna, (3) physical collections are necessary to develop a robust record of species richness, including species-level taxonomic identifications, and to establish a baseline.


Assuntos
Recifes de Corais , Ecossistema , Monitoramento Ambiental
5.
PLoS One ; 12(4): e0175746, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28422974

RESUMO

Biological long-term data series in marine habitats are often used to identify anthropogenic impacts on the environment or climate induced regime shifts. However, particularly in transitional waters, environmental properties like water mass dynamics, salinity variability and the occurrence of oxygen minima not necessarily caused by either human activities or climate change can attenuate or mask apparent signals. At first glance it very often seems impossible to interpret the strong fluctuations of e.g. abundances or species richness, since abiotic variables like salinity and oxygen content vary simultaneously as well as in apparently erratic ways. The long-term development of major macrozoobenthic parameters (abundance, biomass, species numbers) and derivative macrozoobenthic indices (Shannon diversity, Margalef, Pilou's evenness and Hurlbert) has been successfully interpreted and related to the long-term fluctuations of salinity and oxygen, incorporation of the North Atlantic Oscillation index (NAO index), relying on the statistical analysis of modelled and measured data during 35 years of observation at three stations in the south-western Baltic Sea. Our results suggest that even at a restricted spatial scale the benthic system does not appear to be tightly controlled by any single environmental driver and highlight the complexity of spatially varying temporal response.


Assuntos
Biomassa , Modelos Estatísticos , Oxigênio/análise , Salinidade , Água do Mar/química , Animais , Oceano Atlântico , Países Bálticos , Biodiversidade , Clima , Ecossistema , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...