Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 62(7): 2019-2036, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38433179

RESUMO

The aptitude-oriented exercises from almost all domains impose cognitive load on their operators. Evaluating such load poses several challenges owing to many factors like measurement mode and complexity, nature of the load, overloading conditions, etc. Nevertheless, the physiological measurement of a specific genre of cognitive load and subjective measurement have not been reported along with each other. In this study, the electroencephalography (EEG)-driven machine learning (Support Vector Machine (SVM)) model is sought along with the support of NASA's Task Load Index (NASA-TLX) rating scale for a novel purpose in workload exploration of operators. The Cognitive Load Theory (CLT) was used as the foundation to design the intrinsic stimulus (Spot the Difference task), as most workloads operators are exposed to are notably intrinsic. The SVM-based three-level classification accuracy ranged from 85.4 to 97.4% (p < 0.05), and the NASA-TLX-based three-level classification accuracy ranged from 88.33 to 97.33%. The t-test results show that the neurometric indices contributing to the classification significantly differed (p < 0.05) for every level. The NASA-TLX scale was utilised for validation in its basic form after the validity (Pearson correlation coefficients 0.338 to 0.805 (p < 0.05)) and reliability (Cronbach's α = 0.753) test. This modeling is beneficial to phase out particular-level cognitive exercises from the curriculum during under or overload workload (critical) conditions.


Assuntos
Cognição , Eletroencefalografia , Máquina de Vetores de Suporte , Carga de Trabalho , Humanos , Eletroencefalografia/métodos , Cognição/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Análise e Desempenho de Tarefas
2.
Biomed Tech (Berl) ; 68(3): 297-316, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-36668677

RESUMO

Researchers have been working to magnify mental workload (MWL) modeling for a long time. An important aspect of its modeling is feature selection as it interprets bulky and high-dimensional EEG data and enhances the accuracy of the classification model. In this study, a feature selection technique is proposed to obtain an optimized feature set with multiple domain features that can contribute to classifying the MWL at three distinct levels. The brain signals from thirteen healthy subjects were examined while they attended an intrinsic MWL of spotting differences in a set of similar pictures. The Recursive Feature Elimination (RFE) technique selects the robust features from the feature matrix by eliminating all the least contributing features. Along with the Support Vector Machine (SVM), the overall classification accuracy with the proposed RFE reached 0.913 from 0.791 surpassing the other techniques mentioned. The results of the study also significantly display the variation in the mean values of the selected features at the three workload levels (p<0.05). This model can become the principle for defining the workload level quantification applicable to diverse fields like neuroergonomics study, intelligent assistive devices (ADs) development, blue-chip technology exploration, cognitive evaluation of students, power plant operators, traffic operators, etc.


Assuntos
Encéfalo , Máquina de Vetores de Suporte , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...