Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 2(6): 1336-50, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19969519

RESUMO

Copper (Cu) is an important mineral nutrient found in chloroplasts as a cofactor associated with plastocyanin and Cu/Zn superoxide dismutase (Cu/ZnSOD). Superoxide dismutases are metallo-enzymes found in most oxygenic organisms with proposed roles in reducing oxidative stress. Several recent studies in Arabidopsis have shown that microRNAs and a SQUAMOSA promoter binding protein-like7 (SPL7) transcription factor function to down-regulate the expression of many Cu-proteins, including Cu/ZnSOD in both plastids and the cytosol, during growth on low Cu. Plants contain the Cu Chaperone for SOD (CCS) that delivers Cu to Cu/ZnSODs, and, in Arabidopsis, both cytosolic and plastidic CCS versions are encoded by one gene. In this study, we demonstrate that Arabidopsis CCS transcript levels are regulated by Cu, mediated by microRNA 398 that was not previously predicted to target CCS. The microRNA target site is conserved in CCS of Oryza sativa. The data suggest that Cu-regulated microRNAs may have more mRNA targets than was previously predicted. A CCS null mutant has no measurable SOD activity in the chloroplast and cytosol, indicating an absolute requirement for CCS. When the CCS null mutant was grown on high Cu media, it lacked both Fe superoxide dismutase (FeSOD) and Cu/ZnSOD activity. However, this did not lead to a visual phenotype and no photosynthetic deficiencies were detected, even after high light stress. These results indicate that Cu/ZnSOD is not a pivotal component of the photosynthetic anti-oxidant system during growth in laboratory conditions.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cobre/metabolismo , Citosol/metabolismo , Superóxido Dismutase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Clorofila/metabolismo , MicroRNAs/genética , Mutação , Fenótipo , Regiões Promotoras Genéticas , RNA de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
2.
New Phytol ; 182(4): 799-816, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19402880

RESUMO

Copper (Cu) is a cofactor in proteins that are involved in electron transfer reactions and is an essential micronutrient for plants. Copper delivery is accomplished by the concerted action of a set of evolutionarily conserved transporters and metallochaperones. As a result of regulation of transporters in the root and the rarity of natural soils with high Cu levels, very few plants in nature will experience Cu in toxic excess in their tissues. However, low Cu bioavailability can limit plant productivity and plants have an interesting response to impending Cu deficiency, which is regulated by an evolutionarily conserved master switch. When Cu supply is insufficient, systems to increase uptake are activated and the available Cu is utilized with economy. A number of Cu-regulated small RNA molecules, the Cu-microRNAs, are used to downregulate Cu proteins that are seemingly not essential. On low Cu, the Cu-microRNAs are upregulated by the master Cu-responsive transcription factor SPL7, which also activates expression of genes involved in Cu assimilation. This regulation allows the most important proteins, which are required for photo-autotrophic growth, to remain active over a wide range of Cu concentrations and this should broaden the range where plants can thrive.


Assuntos
Cobre/metabolismo , Homeostase , Fotossíntese , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...