Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 5(8): e11956, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20694142

RESUMO

BACKGROUND: Phosphatidic acid (PA) is a key regulated intermediate and precursor for de novo biosynthesis of all glycerophospholipids. PA can be synthesized through the acylation of lysophosphatidic acid (LPA) by 1-acyl-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase, LPAAT). Recent findings have substantiated the essential roles of acyltransferases in various biological functions. METHODOLOGIES/PRINCIPAL FINDINGS: We used a flow-injection-based lipidomic approach with approximately 200 multiple reaction monitoring (MRM) transitions to pre-screen fatty acyl composition of phospholipids in the yeast Saccharomyces cerevisiae mutants. Dramatic changes were observed in fatty acyl composition in some yeast mutants including Slc1p, a well-characterized LPAAT, and Cst26p, a recently characterized phosphatidylinositol stearoyl incorporating 1 protein and putative LPAAT in S. cerevisiae. A comprehensive high-performance liquid chromatography-based multi-stage MRM approach (more than 500 MRM transitions) was developed and further applied to quantify individual phospholipids in both strains to confirm these changes. Our data suggest potential fatty acyl substrates as well as fatty acyls that compensate for defects in both Cst26p and Slc1p mutants. These results were consistent with those from a non-radioactive LPAAT enzymatic assay using C17-LPA and acyl-CoA donors as substrates. CONCLUSIONS: We found that Slc1p utilized fatty acid (FA) 18:1 and FA 14:0 as substrates to synthesize corresponding PAs; moreover, it was probably the only acyltransferase responsible for acylation of saturated short-chain fatty acyls (12:0 and 10:0) in S. cerevisiae. We also identified FA 18:0, FA 16:0, FA 14:0 and exogenous FA 17:0 as preferred substrates for Cst26p because transformation with a GFP-tagged CST26 restored the phospholipid profile of a CST26 mutant. Our current findings expand the enzymes and existing scope of acyl-CoA donors for glycerophospholipid biosynthesis.


Assuntos
Aciltransferases/metabolismo , Biologia Computacional/métodos , Ensaios Enzimáticos/métodos , Metabolismo dos Lipídeos , Proteínas de Saccharomyces cerevisiae/metabolismo , Aciltransferases/genética , Bases de Dados de Proteínas , Dineínas , Ácidos Graxos/metabolismo , Espectrometria de Massas , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
2.
Mol Biosyst ; 6(6): 1008-17, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20485745

RESUMO

Recent rapid growth of lipidomics is mainly attributed to technological advances in mass spectrometry. Development of soft ionization techniques, in combination with computational tools, has spurred subsequent development of various methods for lipid analysis. However, none of these existing approaches can cover major cellular lipids in a single run. Here we demonstrate that a single method of liquid chromatography coupled with mass spectrometry (LCMS) can be used for simultaneous profiling of major cellular lipids including glycerophospholipids (PLs), sphingolipids (SPLs), waxes, sterols (ST) and mono-, di- as well as triacylglycerides (MAG, DAG, TAG). We applied this approach to analyze these lipids in various organisms including Saccharomyces cerevisiae and Schizosaccharomyces pombe. While phospholipids and triacylglycerides of S. pombe mainly contain 18 : 1 fatty acyls, those of S. cerevisiae contain 16 : 1, 16 : 0 and 18 : 1 fatty acyls. S. cerevisiae and S. pombe contain distinct sphingolipid profiles. S. cerevisiae has abundant inositol phytoceramides (IPC), while S. pombe contains high levels of free phytoceramides as well as short chain phytoceramides (t18:1/20 : 0-B) and IPC (t18:1/20 : 0-B). In S. cerevisiae, our results demonstrated accumulation of ergosterol esters in tgl1Delta cells and accumulation of various TAG species in tgl3Delta cells, which are consistent with the function of the respective enzymes. Furthermore, we, for the first time, systematically characterized lipids in S. pombe and measured their dynamic changes in Deltaplh1Deltadga1 cells at different growth phases. We further discussed dynamic changes of phospholipids, sphingolipids and neutral lipids in the progress of programmed cell death in Deltaplh1Deltadga1 cells of S. pombe.


Assuntos
Cromatografia Líquida/métodos , Lipídeos/análise , Espectrometria de Massas/métodos , Saccharomyces cerevisiae/química , Schizosaccharomyces/química , Ceramidas/análise , Lipídeos/química , Esfingolipídeos/análise , Esfingolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...