Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(8): 087401, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457718

RESUMO

The presence of the giant component is a necessary condition for the emergence of collective behavior in complex networked systems. Unlike networks, hypergraphs have an important native feature that components of hypergraphs might be of higher order, which could be defined in terms of the number of common nodes shared between hyperedges. Although the extensive higher-order component (HOC) could be witnessed ubiquitously in real-world hypergraphs, the role of the giant HOC in collective behavior on hypergraphs has yet to be elucidated. In this Letter, we demonstrate that the presence of the giant HOC fundamentally alters the outbreak patterns of higher-order contagion dynamics on real-world hypergraphs. Most crucially, the giant HOC is required for the higher-order contagion to invade globally from a single seed. We confirm it by using synthetic random hypergraphs containing adjustable and analytically calculable giant HOC.

2.
Phys Rev E ; 108(3-1): 034313, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849153

RESUMO

In complex social systems encoded as hypergraphs, higher-order (i.e., group) interactions taking place among more than two individuals are represented by hyperedges. One of the higher-order correlation structures native to hypergraphs is the nestedness: Some hyperedges can be entirely contained (that is, nested) within another larger hyperedge, which itself can also be nested further in a hierarchical manner. Yet the effect of such hierarchical structure of hyperedges on the dynamics has remained unexplored. In this context, here we propose a random nested-hypergraph model with a tunable level of nestedness and investigate the effects of nestedness on a higher-order susceptible-infected-susceptible process. By developing an analytic framework called the facet approximation, we obtain the steady-state fraction of infected nodes on the random nested-hypergraph model more accurately than existing methods. Our results show that the hyperedge-nestedness affects the phase diagram significantly. Monte Carlo simulations support the analytical results.

3.
J Korean Phys Soc ; 81(7): 680-687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909500

RESUMO

Network robustness has been a pivotal issue in the study of system failure in network science since its inception. To shed light on this subject, we introduce and study a new percolation process based on a new cluster called an 'exclave' cluster. The entities comprising exclave clusters in a network are the sets of connected unfailed nodes that are completely surrounded by the failed (i.e., nonfunctional) nodes. The exclave clusters are thus detached from other unfailed parts of the network, thereby becoming effectively nonfunctional. This process defines a new class of clusters of nonfunctional nodes. We call it the no-exclave percolation cluster (NExP cluster), formed by the connected union of failed clusters and the exclave clusters they enclose. Here we showcase the effect of NExP cluster, suggesting a wide and disruptive collapse in two empirical infrastructure networks. We also study on two-dimensional Euclidean lattice to analyze the phase transition behavior using finite-size scaling. The NExP model considering the collective failure clusters uncovers new aspects of network collapse as a percolation process, such as quantitative change of transition point and qualitative change of transition type. Our study discloses hidden indirect damage added to the damage directly from attacks, and thus suggests a new useful way for finding nonfunctioning areas in complex systems under external perturbations as well as internal partial closures.

4.
Chaos ; 32(2): 023115, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35232055

RESUMO

We propose a K-selective percolation process as a model for iterative removals of nodes with a specific intermediate degree in complex networks. In the model, a random node with degree K is deactivated one by one until no more nodes with degree K remain. The non-monotonic response of the giant component size on various synthetic and real-world networks implies a conclusion that a network can be more robust against such a selective attack by removing further edges. From a theoretical perspective, the K-selective percolation process exhibits a rich repertoire of phase transitions, including double transitions of hybrid and continuous, as well as reentrant transitions. Notably, we observe a tricritical-like point on Erdos-Rényi networks. We also examine a discontinuous transition with unusual order parameter fluctuation and distribution on simple cubic lattices, which does not appear in other percolation models with cascade processes. Finally, we perform finite-size scaling analysis to obtain critical exponents on various transition points, including those exotic ones.

5.
Chaos ; 30(7): 073131, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32752629

RESUMO

How the giant component of a network disappears under attacking nodes or links addresses a key aspect of network robustness, which can be framed into percolation problems. Various strategies to select the node to be deactivated have been studied in the literature, for instance, a simple random failure or high-degree adaptive (HDA) percolation. Recently, a new attack strategy based on a quantity called collective-influence (CI) has been proposed from the perspective of optimal percolation. By successively deactivating the node having the largest CI-centrality value, it was shown to be able to dismantle a network more quickly and abruptly than many of the existing methods. In this paper, we focus on the critical behaviors of the percolation processes following degree-based attack and CI-based attack on random networks. Through extensive Monte Carlo simulations assisted by numerical solutions, we estimate various critical exponents of the HDA percolation and those of the CI percolations. Our results show that these attack-type percolation processes, despite displaying apparently more abrupt collapse, nevertheless exhibit standard mean-field critical behaviors at the percolation transition point. We further discover an extensive degeneracy in top-centrality nodes in both processes, which may provide a hint for understanding the observed results.

6.
Sci Rep ; 6: 26346, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27211291

RESUMO

Many real-world complex systems across natural, social, and economical domains consist of manifold layers to form multiplex networks. The multiple network layers give rise to nonlinear effect for the emergent dynamics of systems. Especially, weak layers that can potentially play significant role in amplifying the vulnerability of multiplex networks might be shadowed in the aggregated single-layer network framework which indiscriminately accumulates all layers. Here we present a simple model of cascading failure on multiplex networks of weight-heterogeneous layers. By simulating the model on the multiplex network of international trades, we found that the multiplex model produces more catastrophic cascading failures which are the result of emergent collective effect of coupling layers, rather than the simple sum thereof. Therefore risks can be systematically underestimated in single-layer network analyses because the impact of weak layers can be overlooked. We anticipate that our simple theoretical study can contribute to further investigation and design of optimal risk-averse real-world complex systems.

7.
Sci Rep ; 6: 21392, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887527

RESUMO

We study a model of information spreading on multiplex networks, in which agents interact through multiple interaction channels (layers), say online vs. offline communication layers, subject to layer-switching cost for transmissions across different interaction layers. The model is characterized by the layer-wise path-dependent transmissibility over a contact, that is dynamically determined dependently on both incoming and outgoing transmission layers. We formulate an analytical framework to deal with such path-dependent transmissibility and demonstrate the nontrivial interplay between the multiplexity and spreading dynamics, including optimality. It is shown that the epidemic threshold and prevalence respond to the layer-switching cost non-monotonically and that the optimal conditions can change in abrupt non-analytic ways, depending also on the densities of network layers and the type of seed infections. Our results elucidate the essential role of multiplexity that its explicit consideration should be crucial for realistic modeling and prediction of spreading phenomena on multiplex social networks in an era of ever-diversifying social interaction layers.


Assuntos
Disseminação de Informação , Modelos Teóricos
8.
Artigo em Inglês | MEDLINE | ID: mdl-24827175

RESUMO

Many complex systems demand manifold resources to be supplied from distinct channels to function properly, e.g., water, gas, and electricity for a city. Here, we study a model for viability of such systems demanding more than one type of vital resource be produced and distributed by resource nodes in multiplex networks. We found a rich variety of behaviors such as discontinuity, bistability, and hysteresis in the fraction of viable nodes with respect to the density of networks and the fraction of resource nodes. Our result suggests that viability in multiplex networks is not only exposed to the risk of abrupt collapse but also suffers excessive complication in recovery.

9.
Artigo em Inglês | MEDLINE | ID: mdl-24827297

RESUMO

We study the robustness properties of multiplex networks consisting of multiple layers of distinct types of links, focusing on the role of correlations between degrees of a node in different layers. We use generating function formalism to address various notions of the network robustness relevant to multiplex networks, such as the resilience of ordinary and mutual connectivity under random or targeted node removals, as well as the biconnectivity. We found that correlated coupling can affect the structural robustness of multiplex networks in diverse fashion. For example, for maximally correlated duplex networks, all pairs of nodes in the giant component are connected via at least two independent paths and network structure is highly resilient to random failure. In contrast, anticorrelated duplex networks are on one hand robust against targeted attack on high-degree nodes, but on the other hand they can be vulnerable to random failure.

10.
Artigo em Inglês | MEDLINE | ID: mdl-25615156

RESUMO

Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.

11.
Phys Rev Lett ; 111(5): 058702, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952454

RESUMO

Distinct channels of interaction in a complex networked system define network layers, which coexist and cooperate for the system's function. Towards understanding such multiplex systems, we propose a modeling framework based on coevolution of network layers, with a class of minimalistic growing network models as working examples. We examine how the entangled growth of coevolving layers can shape the network structure and show analytically and numerically that the coevolution can induce strong degree correlations across layers, as well as modulate degree distributions. We further show that such a coevolution-induced correlated multiplexity can alter the system's response to the dynamical process, exemplified by the suppressed susceptibility to a social cascade process.


Assuntos
Modelos Teóricos , Humanos , Apoio Social
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 2): 027101, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23005888

RESUMO

The branching process (BP) approach has been successful in explaining the avalanche dynamics in complex networks. However, its applications are mainly focused on unipartite networks, in which all nodes are of the same type. Here, motivated by a need to understand avalanche dynamics in metabolic networks, we extend the BP approach to a particular bipartite network composed of Boolean AND and OR logic gates. We reduce the bipartite network into a unipartite network by integrating out OR gates and obtain the effective branching ratio for the remaining AND gates. Then the standard BP approach is applied to the reduced network, and the avalanche-size distribution is obtained. We test the BP results with simulations on the model networks and two microbial metabolic networks, demonstrating the usefulness of the BP approach.


Assuntos
Bactérias/metabolismo , Biofísica/métodos , Algoritmos , Avalanche , Simulação por Computador , Escherichia coli/metabolismo , Modelos Estatísticos , Modelos Teóricos , Movimento , Probabilidade , Saccharomyces cerevisiae/metabolismo
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 2): 045102, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22680529

RESUMO

Elements of networks interact in many ways, so modeling them with graphs requires multiple types of edges (or network layers). Here we show that such multiplex networks are generically more vulnerable to global cascades than simplex networks. We generalize the threshold cascade model [Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2002)] to multiplex networks, in which a node activates if a sufficiently large fraction of neighbors in any layer are active. We show that both combining layers (i.e., realizing other interactions play a role) and splitting a network into layers (i.e., recognizing distinct kinds of interactions) facilitate cascades. Notably, layers unsusceptible to global cascades can cooperatively achieve them if coupled. On one hand, this suggests fundamental limitations on predicting cascades without full knowledge of a system's multiplexity; on the other hand, it offers feasible means to control cascades by introducing or removing sparse layers in an existing network.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 036102, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21517553

RESUMO

We study the susceptible-infected model with power-law waiting time distributions P(τ)~τ^{-α}, as a model of spreading dynamics under heterogeneous human activity patterns. We found that the average number of new infections n(t) at time t decays as a power law in the long-time limit, n(t)~t^{-ß}, leading to extremely slow prevalence decay. We also found that the exponent in the spreading dynamics ß is related to that in the waiting time distribution α in a way depending on the interactions between agents but insensitive to the network topology. These observations are well supported by both the theoretical predictions and the long prevalence decay time in real social spreading phenomena. Our results unify individual activity patterns with macroscopic collective dynamics at the network level.


Assuntos
Doenças Transmissíveis/transmissão , Atividades Humanas , Modelos Biológicos , Suscetibilidade a Doenças , Humanos , Apoio Social
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 2): 066109, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20866480

RESUMO

We study the effect of team and hierarchy on the waiting-time dynamics of priority-queue networks. To this end, we introduce generalized priority-queue network models incorporating interaction rules based on team-execution and hierarchy in decision making, respectively. It is numerically found that the waiting-time distribution exhibits a power law for long waiting times in both cases, yet with different exponents depending on the team size and the position of queue nodes in the hierarchy, respectively. The observed power-law behaviors have in many cases a corresponding single or pairwise-interacting queue dynamics, suggesting that the pairwise interaction may constitute a major dynamic consequence in the priority-queue networks. It is also found that the reciprocity of influence is a relevant factor for the priority-queue network dynamics.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 2): 026112, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20866881

RESUMO

The rise and fall of a research field is the cumulative outcome of its intrinsic scientific value and social coordination among scientists. The structure of the social component is quantifiable by the social network of researchers linked via coauthorship relations, which can be tracked through digital records. Here, we use such coauthorship data in theoretical physics and study their complete evolutionary trail since inception, with a particular emphasis on the early transient stages. We find that the coauthorship networks evolve through three common major processes in time: the nucleation of small isolated components, the formation of a treelike giant component through cluster aggregation, and the entanglement of the network by large-scale loops. The giant component is constantly changing yet robust upon link degradations, forming the network's dynamic core. The observed patterns are successfully reproducible through a network model.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 2): 056110, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19518524

RESUMO

We study the dynamics of priority-queue networks, generalizations of the binary interacting priority-queue model introduced by Oliveira and Vazquez [Physica A 388, 187 (2009)]. We found that the original AND-type protocol for interacting tasks is not scalable for the queue networks with loops because the dynamics becomes frozen due to the priority conflicts. We then consider a scalable interaction protocol, an OR-type one, and examine the effects of the network topology and the number of queues on the waiting time distributions of the priority-queue networks, finding that they exhibit power-law tails in all cases considered, yet with model-dependent power-law exponents. We also show that the synchronicity in task executions, giving rise to priority conflicts in the priority-queue networks, is a relevant factor in the queue dynamics that can change the power-law exponent of the waiting time distribution.

18.
Chaos ; 17(2): 026116, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17614703

RESUMO

A random sequential box-covering algorithm recently introduced to measure the fractal dimension in scale-free (SF) networks is investigated. The algorithm contains Monte Carlo sequential steps of choosing the position of the center of each box; thereby, vertices in preassigned boxes can divide subsequent boxes into more than one piece, but divided boxes are counted once. We find that such box-split allowance in the algorithm is a crucial ingredient necessary to obtain the fractal scaling for fractal networks; however, it is inessential for regular lattice and conventional fractal objects embedded in the Euclidean space. Next, the algorithm is viewed from the cluster-growing perspective that boxes are allowed to overlap; thereby, vertices can belong to more than one box. The number of distinct boxes a vertex belongs to is, then, distributed in a heterogeneous manner for SF fractal networks, while it is of Poisson-type for the conventional fractal objects.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(1 Pt 2): 016110, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17358227

RESUMO

Fractal scaling--a power-law behavior of the number of boxes needed to tile a given network with respect to the lateral size of the box--is studied. We introduce a box-covering algorithm that is a modified version of the original algorithm introduced by Song [Nature (London) 433, 392 (2005)]; this algorithm enables easy implementation. Fractal networks are viewed as comprising a skeleton and shortcuts. The skeleton, embedded underneath the original network, is a special type of spanning tree based on the edge betweenness centrality; it provides a scaffold for the fractality of the network. When the skeleton is regarded as a branching tree, it exhibits a plateau in the mean branching number as a function of the distance from a root. For nonfractal networks, on the other hand, the mean branching number decays to zero without forming a plateau. Based on these observations, we construct a fractal network model by combining a random branching tree and local shortcuts. The scaffold branching tree can be either critical or supercritical, depending on the small worldness of a given network. For the network constructed from the critical (supercritical) branching tree, the average number of vertices within a given box grows with the lateral size of the box according to a power-law (an exponential) form in the cluster-growing method. The critical and supercritical skeletons are observed in protein interaction networks and the World Wide Web, respectively. The distribution of box masses, i.e., the number of vertices within each box, follows a power law Pm(M) approximately M(-eta). The exponent eta depends on the box lateral size l(B). For small values of l(B), eta is equal to the degree exponent gamma of a given scale-free network, whereas eta approaches the exponent tau=gamma/(gamma-1) as l(B) increases, which is the exponent of the cluster-size distribution of the random branching tree. Finally, we study the perimeter H(alpha) of a given box alpha, i.e., the number of edges connected to different boxes from a given box alpha as a function of the box mass M(B,alpha). It is obtained that the average perimeter over the boxes with box mass M(B) is likely to scale as approximately M(B), irrespective of the box size l(B).

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 066123, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16906930

RESUMO

With the advancement in the information age, people are using electronic media more frequently for communications, and social relationships are also increasingly resorting to online channels. While extensive studies on traditional social networks have been carried out, little has been done on online social networks. Here we analyze the structure and evolution of online social relationships by examining the temporal records of a bulletin board system (BBS) in a university. The BBS dataset comprises of 1908 boards, in which a total of 7446 students participate. An edge is assigned to each dialogue between two students, and it is defined as the appearance of the name of a student in the from- and to-field in each message. This yields a weighted network between the communicating students with an unambiguous group association of individuals. In contrast to a typical community network, where intracommunities (intercommunities) are strongly (weakly) tied, the BBS network contains hub members who participate in many boards simultaneously but are strongly tied, that is, they have a large degree and betweenness centrality and provide communication channels between communities. On the other hand, intracommunities are rather homogeneously and weakly connected. Such a structure, which has never been empirically characterized in the past, might provide a new perspective on the social opinion formation in this digital era.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...