Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 100(25): 253901, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643661

RESUMO

We generated a series of harmonics in a xenon gas jet inside a cavity seeded by pulses from a Ti:sapphire mode-locked laser with a repetition rate of 10.8 MHz. Harmonics up to 19th order at 43 nm were observed with plateau harmonics at the microW power level. An elaborate dispersion compensation scheme and the use of a moderate repetition rate allowed for this significant improvement in output power of the plateau harmonics of 4 orders of magnitude over previous results. With this power level and repetition rate, high-resolution spectroscopy in the extreme ultraviolet region becomes conceivable. An interesting target would be the 1S-2S transition in hydrogenlike He+ at 60 nm.

2.
Opt Express ; 16(10): 7071-82, 2008 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-18545411

RESUMO

We demonstrate phase stable, mJ-level parametric amplification of pulse pairs originating from a Ti:Sapphire frequency comb laser. The amplifier-induced phase shift between the pulses has been determined interferometrically with an accuracy of approximately 10 mrad. Typical phase shifts are on the order of 50-200 mrad, depending on the operating conditions. The measured phase-relation can be as stable as 20 mrad rms (1/300(th) of an optical cycle). This makes the system suitable for Ramsey spectroscopy at short wavelengths by employing harmonic upconversion of the double-pulses in nonlinear media.


Assuntos
Óxido de Alumínio/química , Lasers , Titânio/química , Desenho de Equipamento , Modelos Estatísticos , Oscilometria/instrumentação , Oscilometria/métodos , Fotoquímica/métodos , Reprodutibilidade dos Testes , Espectrofotometria/métodos , Fatores de Tempo
3.
Nature ; 421(6923): 611-5, 2003 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-12571590

RESUMO

The amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10(-15) s) timescale. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak. This so-called carrier-envelope phase has been predicted and observed to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light. Here we report the generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty. Using these reproducible light waveforms, we create light-induced atomic currents in ionized matter; the motion of the electronic wave packets can be controlled on timescales shorter than 250 attoseconds (250 x 10(-18) s). This enables us to control the attosecond temporal structure of coherent soft X-ray emission produced by the atomic currents--these X-ray photons provide a sensitive and intuitive tool for determining the carrier-envelope phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...