Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Dev Neurosci ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325353

RESUMO

INTRODUCTION: Sex differences exist in the prevalence of neurodevelopmental disorders (NDDs). Part of the aetiology of NDDs has been proposed to be alterations in the balance between excitatory and inhibitory neurotransmission, leading to the question of whether males and females respond differently to altered neurotransmitter balance. We investigated whether pharmacological alteration of GABAA signalling in early development results in sex-dependent changes in adult behaviours associated with NDDs. METHODS: Male and female C57BL/6J mice received intraperitoneal injections of 0.5mg/kg muscimol or saline on postnatal days (P) 3-5 and were subjected to behavioural testing, specifically open field, light dark box, marble burying, sucralose preference, social interaction and olfactory habituation/dishabituation tests between P60-90. RESULTS: Early postnatal administration of muscimol resulted in reduced anxiety in the light dark box test in both male and female adult mice. Muscimol reduced sucralose preference in males, but not females, whereas female mice showed reduced social behaviours. Regional alterations in cortical thickness were observed in the weeks following GABAA receptor activation, pointing to an evolving structural difference in the brain underlying adult behaviour. CONCLUSIONS: We conclude that activation of the GABAA receptor in the first week of life resulted in long-lasting changes in a range of behaviours in adulthood following altered neurodevelopment. Sex of the individual affected the nature and severity of these abnormalities, explaining part of the varied pathophysiology and neurodevelopmental diagnosis that derive from excitatory/inhibitory imbalance.

2.
J Neuroinflammation ; 19(1): 265, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309753

RESUMO

Encephalopathy of prematurity (EoP) affects approximately 30% of infants born < 32 weeks gestation and is highly associated with inflammation in the foetus. Here we evaluated the efficacy of montelukast, a cysteinyl leukotriene receptor antagonist widely used to treat asthma in children, to ameliorate peripheral and central inflammation, and subsequent grey matter neuropathology and behaviour deficits in a mouse model of EoP. Male CD-1 mice were treated with intraperitoneal (i.p.) saline or interleukin-1beta (IL-1ß, 40 µg/kg, 5 µL/g body weight) from postnatal day (P)1-5 ± concomitant montelukast (1-30 mg/kg). Saline or montelukast treatment was continued for a further 5 days post-injury. Assessment of systemic and central inflammation and short-term neuropathology was performed from 4 h following treatment through to P10. Behavioural testing, MRI and neuropathological assessments were made on a second cohort of animals from P36 to 54. Montelukast was found to attenuate both peripheral and central inflammation, reducing the expression of pro-inflammatory molecules (IL-1ß, IL-6, TNF) in the brain. Inflammation induced a reduction in parvalbumin-positive interneuron density in the cortex, which was normalised with high-dose montelukast. The lowest effective dose, 3 mg/kg, was able to improve anxiety and spatial learning deficits in this model of inflammatory injury, and alterations in cortical mean diffusivity were not present in animals that received this dose of montelukast. Repurposed montelukast administered early after preterm birth may, therefore, improve grey matter development and outcome in EoP.


Assuntos
Encefalopatias , Nascimento Prematuro , Quinolinas , Recém-Nascido , Humanos , Feminino , Masculino , Animais , Camundongos , Substância Cinzenta , Nascimento Prematuro/tratamento farmacológico , Acetatos/uso terapêutico , Acetatos/farmacologia , Quinolinas/uso terapêutico , Quinolinas/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico
3.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360985

RESUMO

Neurodevelopmental disorders can derive from a complex combination of genetic variation and environmental pressures on key developmental processes. Despite this complex aetiology, and the equally complex array of syndromes and conditions diagnosed under the heading of neurodevelopmental disorder, there are parallels in the neuropathology of these conditions that suggest overlapping mechanisms of cellular injury and dysfunction. Neuronal arborisation is a process of dendrite and axon extension that is essential for the connectivity between neurons that underlies normal brain function. Disrupted arborisation and synapse formation are commonly reported in neurodevelopmental disorders. Here, we summarise the evidence for disrupted neuronal arborisation in these conditions, focusing primarily on the cortex and hippocampus. In addition, we explore the developmentally specific mechanisms by which neuronal arborisation is regulated. Finally, we discuss key regulators of neuronal arborisation that could link to neurodevelopmental disease and the potential for pharmacological modification of arborisation and the formation of synaptic connections that may provide therapeutic benefit in the future.


Assuntos
Encéfalo/crescimento & desenvolvimento , Transtornos do Neurodesenvolvimento/patologia , Crescimento Neuronal , Animais , Encéfalo/fisiopatologia , Dendritos/metabolismo , Dendritos/patologia , Humanos , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/fisiopatologia , Fármacos Neuroprotetores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...