Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(41): 19301-19314, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31626253

RESUMO

We investigate the photocatalytic performance of composites prepared in a one-step process by liquid-phase exfoliation of graphite in the presence of TiO2 nanoparticles (NPs) at atmospheric pressure and in water, without heating or adding any surfactant, and starting from low-cost commercial reagents. These show enhanced photocatalytic activity, degrading up to 40% more pollutants with respect to the starting TiO2-NPs, in the case of a model dye target, and up to 70% more pollutants in the case of nitrogen oxides. In order to understand the photo-physical mechanisms underlying this enhancement, we investigate the photo-generation of reactive species (trapped holes and electrons) by ultrafast transient absorption spectroscopy. We observe an electron transfer process from TiO2 to the graphite flakes within the first picoseconds of the relaxation dynamics, which causes the decrease of the charge recombination rate, and increases the efficiency of the reactive species photo-production.

2.
Langmuir ; 29(6): 1938-47, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23320460

RESUMO

Comb polyelectrolytes (CPs) having neutral hydrophilic teeth, similar to double hydrophilic block copolymers, are a powerful tool to modify the chemical-physical properties of inorganic crystalline materials. One of their main applications is in concrete technology, where they work as superplasticizers, particle-dispersing agents. Here, CPs, having the same poly(acrylic acid) (PAA) backbone chain and differing in the grafting with methoxy poly(ethylene glycol) chains (MPEG) of two molecular weights, were used to investigate the influence of tooth chains in polymer aggregation and in control on morphology and aggregation of calcite particles. These polymers aggregate, forming interpolymer hydrogen bonds between carboxylic groups and ether oxygen functionalities. The presence of calcium ions in solution further enhances aggregation. Crystallization experiments of calcite in the presence of CPs show that the specificity of interactions between polymers and crystal planes and control on aggregation and size of particles is a function of the content and chain length of the MPEG in the PAA backbone. These parameters limit and can make specific the electrostatic interactions with ionic crystalline planes. Moreover, the mechanism of crystallization, classical or nonclassical, is addressed by the CP structure and concentration. These findings have implications in the understanding of the complex chemical processes associated to concrete superplasticizers action and in the study of the biomineralization processes, where biological comb polyelectrolytes, the acidic glycoproteins, govern formation of calcitic structures.

3.
Langmuir ; 26(20): 15814-23, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20866034

RESUMO

The rheology of cement pastes can be controlled by polymeric dispersants such as branched polyelectrolytes that adsorb on the surfaces of silicate particles. In the present work, we analyze the adsorption behavior of ad hoc-prepared end-carboxylated poly(ethylene glycol), or PEG, on CaCO(3) particles as a model of cement in an early hydration stage. The experimental adsorption isotherms form the base of a theoretical study aimed at unraveling polymer conformational aspects of adsorption. The study was carried out with Monte Carlo simulations using a coarse-grained bead-and-spring model of linear end-charged polymer chains adsorbing on a flat, continuous, uniformly charged surface. The adsorption driving force was introduced by a Debye-Hückel electrostatic screened potential to describe the interaction between the negatively charged end group of PEG and the positively charged CaCO(3) surface empirically. With a suitable length-scale conversion between real PEG and the coarse-grained model, the calculated and experimental adsorption isotherms can be semiquantitatively compared. The theoretical results reproduce the fundamental aspects of polymer adsorption, in essential agreement with analytical approaches relating the isotherm shape to the polymer conformational properties. The conformational transition mushroom-brush of the adsorbed polymer is located on the isotherm and is related to the molecular shape. The solvent quality effect and the solution ionic strength are also considered, and their implications on the isotherms are discussed.


Assuntos
Carbonato de Cálcio/química , Modelos Moleculares , Método de Monte Carlo , Polietilenoglicóis/química , Adsorção , Concentração Osmolar , Solventes/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...