Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780431

RESUMO

The elevation of atmospheric CO2 leads to a decline in plant mineral content, which might pose a significant threat to food security in coming decades. Although few genes have been identified for the negative effect of elevated CO2 on plant mineral composition, several studies suggest the existence of genetic factors. Here, we performed a large-scale study to explore genetic diversity of plant ionome responses to elevated CO2, using six hundred Arabidopsis thaliana accessions, representing geographical distributions ranging from worldwide to regional and local environments. We show that growth under elevated CO2 leads to a global decrease of ionome content, whatever the geographic distribution of the population. We observed a high range of genetic diversity, ranging from the most negative effect to resilience or even to a benefit in response to elevated CO2. Using genome-wide association mapping, we identified a large set of genes associated with this response, and we demonstrated that the function of one of these genes is involved in the negative effect of elevated CO2 on plant mineral composition. This resource will contribute to understand the mechanisms underlying the effect of elevated CO2 on plant mineral nutrition, and could help towards the development of crops adapted to a high-CO2 world.


Assuntos
Arabidopsis , Dióxido de Carbono , Variação Genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Estudo de Associação Genômica Ampla
2.
Biochem J ; 480(11): 753-771, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265057

RESUMO

Carbon storage in soils is one of the most promising strategies for mitigating greenhouse gas emissions and the associated climate change. In this context, how plant root systems respond to the elevation of the atmospheric CO2 concentration is of crucial importance because these organs are the main source of C input into the soils. It is expected that root growth will be stimulated by elevated CO2 as a consequence of enhanced photosynthesis, and that this will favour belowground C sequestration. In addition, larger root systems with optimized architecture are also expected to improve water and nutrient acquisition by plants, and to indirectly stimulate photosynthetic CO2 capture. This review critically examines the evidence supporting these expectations from a molecular physiology perspective. We illustrate the strong but highly variable effects of elevated CO2 on root system size and architecture, and provide an update on the signalling mechanisms that may trigger these effects. This highlights the lack of knowledge on the physiological and genetic bases of the root growth and development response to elevated CO2, but shows that candidate genes and genetic resources are largely available to fill this gap.


Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/farmacologia , Plantas , Fotossíntese/fisiologia , Crescimento e Desenvolvimento
3.
J Exp Bot ; 74(14): 4244-4258, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37185665

RESUMO

In Arabidopsis thaliana, root high-affinity nitrate (NO3-) uptake depends mainly on NRT2.1, 2.4, and 2.5, which are repressed by high NO3- supply at the transcript level. For NRT2.1, this regulation is due to the action of (i) feedback down-regulation by N metabolites and (ii) repression by NO3- itself mediated by the transceptor NRT1.1(NPF6.3). However, for NRT2.4 and NRT2.5, the signalling pathway(s) remain unknown as do the molecular elements involved. Here we show that unlike NRT2.1, NRT2.4 and NRT2.5 are not induced in an NO3- reductase mutant but are up-regulated following replacement of NO3- by ammonium (NH4+) as the N source. Moreover, increasing the NO3- concentration in a mixed nutrient solution with constant NH4+ concentration results in a gradual repression of NRT2.4 and NRT2.5, which is suppressed in an nrt1.1 mutant. This indicates that NRT2.4 and NRT2.5 are subjected to repression by NRT1.1-mediated NO3- sensing, and not to feedback repression by reduced N metabolites. We further show that key regulators of NRT2 transporters, such as HHO1, HRS1, PP2C, LBD39, BT1, and BT2, are also regulated by NRT1.1-mediated NO3- sensing, and that several of them are involved in NO3- repression of NRT2.1, NRT2.4, and NRT2.5. Finally, we provide evidence that it is the phosphorylated form of NRT1.1 at the T101 residue, which is most active in triggering the NRT1.1-mediated NO3- regulation of all these genes. Altogether, these data led us to propose a regulatory model for high-affinity NO3- uptake in Arabidopsis, highlighting several NO3- transduction cascades downstream of the phosphorylated form of the NRT1.1 transceptor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
New Phytol ; 239(3): 992-1004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36727308

RESUMO

The elevation of CO2 in the atmosphere increases plant biomass but decreases their mineral content. The genetic and molecular bases of these effects remain mostly unknown, in particular in the root system, which is responsible for plant nutrient uptake. To gain knowledge about the effect of elevated CO2 on plant growth and physiology, and to identify its regulatory in the roots, we analyzed genome expression in Arabidopsis roots through a combinatorial design with contrasted levels of CO2 , nitrate, and iron. We demonstrated that elevated CO2 has a modest effect on root genome expression under nutrient sufficiency, but by contrast leads to massive expression changes under nitrate or iron deficiencies. We demonstrated that elevated CO2 negatively targets nitrate and iron starvation modules at the transcriptional level, associated with a reduction in high-affinity nitrate uptake. Finally, we inferred a gene regulatory network governing the root response to elevated CO2 . This network allowed us to identify candidate transcription factors including MYB15, WOX11, and EDF3 which we experimentally validated for their role in the stimulation of growth by elevated CO2 . Our approach identified key features and regulators of the plant response to elevated CO2 , with the objective of developing crops resilient to climate change.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Redes Reguladoras de Genes , Plantas/metabolismo , Ferro/metabolismo , Raízes de Plantas/metabolismo
5.
Trends Plant Sci ; 28(5): 537-543, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740490

RESUMO

Greenhouse gas (GHG) emissions have created a global climate crisis which requires immediate interventions to mitigate the negative effects on all aspects of life on this planet. As current agriculture and land use contributes up to 25% of total GHG emissions, plant scientists take center stage in finding possible solutions for a transition to sustainable agriculture and land use. In this article, the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term, and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels.


Assuntos
Agricultura , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Plantas , Mudança Climática , Efeito Estufa
6.
Trends Plant Sci ; 28(2): 185-198, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336557

RESUMO

The elevation of atmospheric CO2 concentration has a strong impact on the physiology of C3 plants, far beyond photosynthesis and C metabolism. In particular, it reduces the concentrations of most mineral nutrients in plant tissues, posing major threats on crop quality, nutrient cycles, and carbon sinks in terrestrial agro-ecosystems. The causes of the detrimental effect of high CO2 levels on plant mineral status are not understood. We provide an update on the main hypotheses and review the increasing evidence that, for nitrogen, this detrimental effect is associated with direct inhibition of key mechanisms of nitrogen uptake and assimilation. We also mention promising strategies for identifying genotypes that will maintain robust nutrient status in a future high-CO2 world.


Assuntos
Dióxido de Carbono , Ecossistema , Dióxido de Carbono/metabolismo , Plantas/metabolismo , Minerais/metabolismo , Minerais/farmacologia , Nitrogênio/metabolismo , Fotossíntese
7.
Proc Natl Acad Sci U S A ; 119(31): e2122460119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878040

RESUMO

Mineral nutrition is one of the key environmental factors determining plant development and growth. Nitrate is the major form of macronutrient nitrogen that plants take up from the soil. Fluctuating availability or deficiency of this element severely limits plant growth and negatively affects crop production in the agricultural system. To cope with the heterogeneity of nitrate distribution in soil, plants evolved a complex regulatory mechanism that allows rapid adjustment of physiological and developmental processes to the status of this nutrient. The root, as a major exploitation organ that controls the uptake of nitrate to the plant body, acts as a regulatory hub that, according to nitrate availability, coordinates the growth and development of other plant organs. Here, we identified a regulatory framework, where cytokinin response factors (CRFs) play a central role as a molecular readout of the nitrate status in roots to guide shoot adaptive developmental response. We show that nitrate-driven activation of NLP7, a master regulator of nitrate response in plants, fine tunes biosynthesis of cytokinin in roots and its translocation to shoots where it enhances expression of CRFs. CRFs, through direct transcriptional regulation of PIN auxin transporters, promote the flow of auxin and thereby stimulate the development of shoot organs.


Assuntos
Ácidos Indolacéticos , Nitratos , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta , Transdução de Sinais , Solo
8.
J Exp Bot ; 73(16): 5400-5413, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35595271

RESUMO

Polycomb-group (PcG) proteins are major chromatin complexes that regulate gene expression, mainly described as repressors keeping genes in a transcriptionally silent state during development. Recent studies have nonetheless suggested that PcG proteins might have additional functions, including targeting active genes or acting independently of gene expression regulation. However, the reasons for the implication of PcG proteins and their associated chromatin marks on active genes are still largely unknown. Here, we report that combining mutations for CURLY LEAF (CLF) and LIKE HETEROCHROMATIN PROTEIN1 (LHP1), two Arabidopsis PcG proteins, results in deregulation of expression of active genes that are targeted by PcG proteins or enriched in associated chromatin marks. We show that this deregulation is associated with accumulation of small RNAs corresponding to massive degradation of active gene transcripts. We demonstrate that transcriptionally active genes and especially those targeted by PcG proteins are prone to RNA degradation, even though deregulation of RNA degradation following the loss of function of PcG proteins is not likely to be mediated by a PcG protein-mediated chromatin environment. Therefore, we conclude that PcG protein function is essential to maintain an accurate level of RNA degradation to ensure accurate gene expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , Regulação da Expressão Gênica de Plantas , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Estabilidade de RNA/genética
10.
Nat Commun ; 12(1): 4944, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400629

RESUMO

Plants use nitrate, ammonium, and organic nitrogen in the soil as nitrogen sources. Since the elevated CO2 environment predicted for the near future will reduce nitrate utilization by C3 species, ammonium is attracting great interest. However, abundant ammonium nutrition impairs growth, i.e., ammonium toxicity, the primary cause of which remains to be determined. Here, we show that ammonium assimilation by GLUTAMINE SYNTHETASE 2 (GLN2) localized in the plastid rather than ammonium accumulation is a primary cause for toxicity, which challenges the textbook knowledge. With exposure to toxic levels of ammonium, the shoot GLN2 reaction produced an abundance of protons within cells, thereby elevating shoot acidity and stimulating expression of acidic stress-responsive genes. Application of an alkaline ammonia solution to the ammonium medium efficiently alleviated the ammonium toxicity with a concomitant reduction in shoot acidity. Consequently, we conclude that a primary cause of ammonium toxicity is acidic stress.


Assuntos
Compostos de Amônio/metabolismo , Compostos de Amônio/toxicidade , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Glutamato-Amônia Ligase/metabolismo , Plastídeos/metabolismo , Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glutamato-Amônia Ligase/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Nitratos/metabolismo , Nitrogênio/metabolismo , Brotos de Planta/metabolismo
11.
Plant Physiol ; 186(1): 696-714, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33582801

RESUMO

In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.4, and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways control gene expression of the NRT2 transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of NRT2 gene expression to the interaction of these signals has never been specifically investigated, and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4, and NRT2.5 in response to N/C signals. Our systems analysis of the data identified three transcription factors, TGA3, MYC1, and bHLH093. Functional analysis of mutants combined with yeast one-hybrid experiments confirmed that all three transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals. These results reveal a role for TGA3, MYC1, and bHLH093 in controlling the expression of root NRT2 transporter genes.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Carbono/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla
12.
EMBO J ; 40(3): e106862, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399250

RESUMO

Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate-dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Nitrogênio/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Fosforilação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
13.
J Exp Bot ; 71(20): 6226-6237, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32870279

RESUMO

Plants need efficient nitrate (NO3-) sensing systems and sophisticated signaling pathways to develop a wide range of adaptive responses to external fluctuations of NO3- supply. In Arabidopsis thaliana, numerous molecular regulators have been identified to participate in signaling pathways that respond specifically to NO3-. In contrast, only a single NO3- sensing system has been described to date, relying on the NRT1.1 (NPF6.3/CHL1) NO3- transceptor. NRT1.1 governs a wide range of responses to NO3-, from fast reprogramming of genome expression (the primary nitrate response) to longer-term developmental changes (effects on lateral root development). NRT1.1 appears to be at the center of a complex network of signaling pathways, involving numerous molecular players acting downstream and/or upstream of it. Interestingly, some of these regulators are involved in crosstalk with the signaling pathways of other nutrients, such as inorganic phosphate or potassium. Although NRT1.1-mediated NO3- sensing and signaling has mostly been documented in Arabidopsis, recent evidence indicates that similar mechanisms involving NRT1.1 orthologues are operative in rice. This review aims to delineate how the NRT1.1 sensing system and the downstream/upstream transduction cascades are integrated to control both the expression of NO3--responsive genes and the induced plasticity of root development.


Assuntos
Proteínas de Arabidopsis , Nitratos , Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
14.
New Phytol ; 228(3): 1038-1054, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32463943

RESUMO

In Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.1 plays an important role in the control of root nitrate uptake and that one mechanism could correspond to NRT2.1 C-terminus processing. To further investigate this hypothesis, we produced transgenic plants with truncated forms of NRT2.1. This revealed an essential sequence for NRT2.1 activity, located between the residues 494 and 513. Using a phospho-proteomic approach, we found that this sequence contains one phosphorylation site, at serine 501, which can inactivate NRT2.1 function when mimicking the constitutive phosphorylation of this residue in transgenic plants. This phenotype could neither be explained by changes in abundance of NRT2.1 and NAR2.1, a partner protein of NRT2.1, nor by a lack of interaction between these two proteins. Finally, the relative level of serine 501 phosphorylation was found to be increased by ammonium nitrate in wild-type plants, leading to the inactivation of NRT2.1 and to a decrease in high affinity nitrate transport into roots. Altogether, these observations reveal a new and essential mechanism for the regulation of NRT2.1 activity.


Assuntos
Proteínas de Transporte de Ânions , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteômica
15.
J Exp Bot ; 71(15): 4480-4494, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32428238

RESUMO

In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule in plant growth, development, and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). Here we show that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing the cell wall remodeling required for overlying tissue separation during LRP emergence. NRT1.1-mediated repression of both TAR2 and LAX3 is suppressed at high nitrate availability, resulting in nitrate induction of the TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously expected in regulating the nitrate response of root system architecture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Mutação , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
16.
Plant Physiol ; 180(1): 582-592, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30824566

RESUMO

Reactive oxygen species (ROS) can accumulate in cells at excessive levels, leading to unbalanced redox states and to potential oxidative stress, which can have damaging effects on the molecular components of plant cells. Several environmental conditions have been described as causing an elevation of ROS production in plants. Consequently, activation of detoxification responses is necessary to maintain ROS homeostasis at physiological levels. Misregulation of detoxification systems during oxidative stress can ultimately cause growth retardation and developmental defects. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) plants grown in a high nitrogen (N) environment express a set of genes involved in detoxification of ROS that maintain ROS at physiological levels. We show that the chromatin factor HIGH NITROGEN INSENSITIVE9 (HNI9) is an important mediator of this response and is required for the expression of detoxification genes. Mutation in HNI9 leads to elevated ROS levels and ROS-dependent phenotypic defects under high but not low N provision. In addition, we identify ELONGATED HYPOCOTYL5 as a major transcription factor required for activation of the detoxification program under high N. Our results demonstrate the requirement of a balance between N metabolism and ROS production, and our work establishes major regulators required to control ROS homeostasis under conditions of excess N.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Homeostase , Mutação , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
17.
Sci Rep ; 8(1): 7905, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784958

RESUMO

PRC2 is a major regulator of gene expression in eukaryotes. It catalyzes the repressive chromatin mark H3K27me3, which leads to very low expression of target genes. NRT2.1, which encodes a key root nitrate transporter in Arabidopsis, is targeted by H3K27me3, but the function of PRC2 on NRT2.1 remains unclear. Here, we demonstrate that PRC2 directly targets and down-regulates NRT2.1, but in a context of very high transcription, in nutritional conditions where this gene is one of the most highly expressed genes in the transcriptome. Indeed, the mutation of CLF, which encodes a PRC2 subunit, leads to a loss of H3K27me3 at NRT2.1 and results, exclusively under permissive conditions for NRT2.1, in a further increase in NRT2.1 expression, and specifically in tissues where NRT2.1 is normally expressed. Therefore, our data indicates that PRC2 tempers the hyperactivity of NRT2.1 in a context of very strong transcription. This reveals an original function of PRC2 in the control of the expression of a highly expressed gene in Arabidopsis.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cromatina/química , Cromatina/genética , Histonas/química , Histonas/genética , Complexo Repressor Polycomb 2 , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Transcriptoma
18.
J Exp Bot ; 68(10): 2567-2580, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369438

RESUMO

For microorganisms and plants, nitrate and ammonium are the main nitrogen sources and they are also important signaling molecules controlling several aspects of metabolism and development. Over the past decade, numerous studies revealed that nitrogen transporters are strongly regulated at the transcriptional level. However, more and more reports are now showing that nitrate and ammonium transporters are also subjected to post-translational regulations in response to nitrogen availability. Phosphorylation is so far the most well studied post-translational modification for these transporters and it affects both the regulation of nitrogen uptake and nitrogen sensing. For example, in Arabidopsis thaliana, phosphorylation was shown to activate the sensing function of the root nitrate transporter NRT1.1 and to switch the transport affinity. Also, for ammonium transporters, a phosphorylation-dependent activation/inactivation mechanism was elucidated in recent years in both plants and microorganisms. However, despite the fact that these regulatory mechanisms are starting to be thoroughly described, the signaling pathways involved and their action on nitrogen transporters remain largely unknown. In this review, we highlight the inorganic nitrogen transporters regulated at the post-translational level and we compare the known mechanisms in plants and microorganisms. We then discuss how these mechanisms could contribute to the regulation of nitrogen uptake and/or nitrogen sensing.


Assuntos
Proteínas de Transporte de Ânions/genética , Bactérias/genética , Fungos/genética , Proteínas de Plantas/genética , Plantas/genética , Processamento de Proteína Pós-Traducional , Proteínas de Transporte de Ânions/metabolismo , Bactérias/metabolismo , Fungos/metabolismo , Transportadores de Nitrato , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
19.
J Exp Bot ; 68(10): 2553-2565, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369491

RESUMO

In natural environments, nitrogen (N) concentration in the soil fluctuates greatly and is often limiting for plant growth and development. The ability of plants to respond to changes in N availability is therefore essential for adaptation. The response of plants to N variations consists in particular of adjusting root N uptake systems and root architecture. To do so, plants integrate local sensing and signaling of external N availability with systemic sensing and signaling of their internal N status, in order to tune the functional and structural properties of the root system in accordance with the N demand for growth of the whole plant. Transcriptional regulation of gene expression is one of the most important processes plants use to adapt the properties of the root system in response to local and long-distance N pathways. This review focuses on the mechanisms that give rise to transcriptional responses in Arabidopsis roots under N fluctuations, with an emphasis on those associated with the regulation of nitrate uptake and transport systems. We discuss the putative long-distance signals triggering the gene expression responses, as well as the molecular players that locally induce transcriptional changes. We also highlight several observations revealing the importance of adopting an integrative approach in the regulation of N signaling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Nitrogênio/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte de Íons , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...