Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 168(4): 381-385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37129444

RESUMO

Cholinesterase enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are traditionally associated with the termination of acetylcholine mediated neural signaling. The fact that these ubiquitous enzymes are also found in tissues not involved in neurotransmission has led to search for alternative functions for these enzymes. Cholinesterases are reported to be involved in many lipid related disease states. Taking into view that lipases and cholinesterases belong to the same enzyme class and by comparing the catalytic sites, we propose a new outlook on the link between BChE and lipid metabolism. The lipogenic substrates of BChE that have recently emerged in contrast to traditional cholinesterase substrates are explained through the hydrolytic capacity of BChE for ghrelin, 4-methyumbelliferyl (4-mu) palmitate, and arachidonoylcholine and through endogenous lipid mediators such as cannabinoids like anandamide and essential fatty acids. The abundance of BChE in brain, intestine, liver, and plasma, tissues with active lipid metabolism, supports the idea that BChE may be involved in lipid hydrolysis. BChE is also regulated by various lipids such as linoleic acid, alpha-linolenic acid or dioctanoylglycerol, whereas AChE is inhibited. The finding that BChE is able to hydrolyze 4-mu palmitate at a pH where lipases are less efficient points to its role as a backup in lipolysis. In diseases such as Alzheimer, in which elevated BChE and impaired lipid levels are observed, the lipolytic activity of BChE might be involved. It is possible to suggest that fatty acids such as 4-mu palmitate, ghrelin, arachidonoylcholine, essential fatty acids, and other related lipid mediators regulate cholinesterases, which could lead to some sort of compensatory mechanism at high lipid concentrations.


Assuntos
Butirilcolinesterase , Metabolismo dos Lipídeos , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Ácidos Graxos , Grelina/metabolismo , Ácido Linoleico , Metabolismo dos Lipídeos/genética , Palmitatos
2.
Biochimie ; 204: 127-135, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36126749

RESUMO

Acetylcholinesterase and butyrylcholinesterase (BChE) typically hydrolyze the neurotransmitter acetylcholine. The multifunctional enzyme BChE is associated with lipid metabolism through an undefined mechanism. Based on lipid-related studies and by comparing the structural similarities between lipases and BChE we postulated that the association of BChE with lipid metabolism could occur through hydrolytic activity. Utilizing purified BChE enzymes from different sources and several lipases as controls, the ability of BChE to hydrolyze 4-methylumbelliferyl (4-mu) palmitate is investigated. Using lectin affinity, inhibition kinetics, and molecular modeling, we demonstrated that purified BChE hydrolyzed 4-mu palmitate at pH 8 as effectively as wheat germ lipase. The affinity Km value of the enzymes for 4-mu palmitate as substrate is found as 10.4 µM, 34.2 µM, 129.8 µM, and 186 µM for wheat germ lipase, purified BChE, pancreatic lipase, and commercial BChE, respectively. Analysis of the inhibitory effect of 4-mu palmitate on BChE using butyrylthiocholine as substrate revealed competitive inhibition with Ki and IC50 values of 448 µM and 987.2 µM, respectively. The binding affinity and interactions of 4-mu palmitate with BChE and pancreatic lipase were predicted by molecular docking. These results suggest that BChE possesses lipolytic activity. The possibility that BChE hydrolyzes not only 4-mu palmitate but also other types of lipids will lead to a new approach to those disease states associated with increased BChE activity/expression.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Humanos , Acetilcolinesterase/metabolismo , Hidrólise , Simulação de Acoplamento Molecular , Lipase , Lipídeos , Inibidores da Colinesterase/farmacologia
3.
Front Mol Neurosci ; 15: 941467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117917

RESUMO

Acetylcholinesterase and butyrylcholinesterase (AChE and BChE) are involved in modulating cholinergic signaling, but their roles in Alzheimer's and Parkinson's diseases (AD and PD) remain unclear. We identified a higher frequency of the functionally impaired BCHE-K variant (rs1803274) in AD and PD compared to controls and lower than in the GTEx dataset of healthy individuals (n = 651); in comparison, the prevalence of the 5'-UTR (rs1126680) and intron 2 (rs55781031) single-nucleotide polymorphisms (SNPs) of BCHE and ACHE's 3'-UTR (rs17228616) which disrupt AChE mRNA targeting by miR-608 remained unchanged. qPCR validations confirmed lower levels of the dominant splice variant encoding the "synaptic" membrane-bound ACHE-S in human post-mortem superior temporal gyrus samples from AD and in substantia nigra (but not amygdala) samples from PD patients (n = 79, n = 67) compared to controls, potentially reflecting region-specific loss of cholinergic neurons. In contradistinction, the non-dominant "readthrough" AChE-R mRNA variant encoding for soluble AChE was elevated (p < 0.05) in the AD superior temporal gyrus and the PD amygdala, but not in the neuron-deprived substantia nigra. Elevated levels of BChE (p < 0.001) were seen in AD superior temporal gyrus. Finally, all three ACHE splice variants, AChE-S, AChE-R, and N-extended AChE, were elevated in cholinergic-differentiated human neuroblastoma cells, with exposure to the oxidative stress agent paraquat strongly downregulating AChE-S and BChE, inverse to their upregulation under exposure to the antioxidant simvastatin. The multi-leveled changes in cholinesterase balance highlight the role of post-transcriptional regulation in neurodegeneration. (235).

4.
J Biochem Mol Toxicol ; 36(7): e23075, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35451207

RESUMO

Cisplatin (Cis) is a chemotherapeutic agent that has many side effects. Neurotoxicity is one of the most important of these side effects. Oxidative stress and neuroinflammation are the best-known mechanisms in the pathogenesis of neurotoxicity development. In this study, we aimed to determine whether melatonin (Mel), with antioxidant and anti-inflammatory effects, is effective in preventing Cis-induced neurotoxicity. Forty-eight male Sprague-Dawley rats were divided into six groups (n = 8) as follows: control (0.9% NaCl), vehicle (5% ethanol), Cis (6 mg/kg), Cis (6 mg/kg) + vehicle (5% ethanol), Mel (20 mg/kg), and Cis (6 mg/kg) + Mel (20 mg/kg) groups. Cis was administered as a single dose on the 3rd day of the experiment while Mel was given for 5 days. All administrations were performed via intraperitoneal injection. After injections, T-maze, rotarod, and hot plate tests were performed to evaluate cognitive, motor, and sensory functions, respectively. Following sacrification oxidative stress markers, cholinergic function, and proinflammatory cytokines were studied from brain homogenates. Cis impaired cognitive function and motor performance in the Cis and Cis+Vehicle groups. The drug also increased oxidative stress in the brain. Mel significantly improved brain oxidant/antioxidant status and also decreased the overproduction of proinflammatory cytokines (superoxide dismutase activities in Cis+Vehicle and Cis+Mel groups: 104.55 ± 9.50 µU/mg protein vs. 150.13 ± 4.70 µU/mg protein, respectively, p < 0.05; tumor necrosis factor-α levels in Cis and Cis+Mel groups: 40 pg/ml vs. 20 pg/ml, respectively, p < 0.05). It seems that Mel can improve Cis neurotoxicity. For a more firm conclusion, further studies using Mel at different doses with larger groups should be performed.


Assuntos
Encéfalo , Cisplatino , Melatonina , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Cisplatino/toxicidade , Citocinas , Etanol , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
5.
Metab Brain Dis ; 37(2): 545-557, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800207

RESUMO

Phenylketonuria (PKU) is an inborn error disease in phenylalanine metabolism resulting from defects in the stages of converting phenylalanine to tyrosine. Although the pathophysiology of PKU is not elucidated yet, the toxic effect of phenylalanine on the brain causes severe mental retardation. In relation to learning and memory, the hippocampal PKA / CREB / BDNF pathway may play a role in learning deficits in PKU patients. This study aimed to investigate PKA/CREB/BDNF pathway in hippocampus of chemically induced PKU rats with regard to gender. Sprague-Dawley rat pups were randomized into two groups of both genders. To chemically induce PKU, animals received subcutaneous administration of phenylalanine (5.2 mmol / g) plus p-chlorophenylalanine, phenylalanine hydroxylase inhibitor (0.9 mmol / g); control animals received 0.9% NaCl. Injections started on the 6th day and continued until the 21st day after which locomotor activity, learning and memory were tested. In male PKU rats, locomotor activity was reduced. There were no differences in learning and memory performances of male and female PKU rats. In PKU rats, pCREB / CREB levels in males was unchanged while it decreased in females. Elevated PKA activity, BDNF levels and decreased pCREB/CREB ratio found in female PKU rats were not replicated in PKU males in which BDNF is decreased. Our results display that in this disease model a gender specific differential activation of cAMP/PKA-CREB-BDNF signaling pathway in hippocampus occurs investigation of which can help us to a better understanding of disease pathophysiology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fenilcetonúrias , Animais , Feminino , Masculino , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/metabolismo , Fenilcetonúrias/induzido quimicamente , Fenilcetonúrias/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
6.
Eur J Pharm Biopharm ; 153: 1-13, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504798

RESUMO

Despite the new treatment strategies within the last 30 years, peripheral nerve injury (PNI) is still a worldwide clinical problem. The incidence rate of PNIs is 1 in 1000 individuals per year. In this study, we designed a composite nanoplatform for dual therapy in peripheral nerve injury and investigated the in-vivo efficacy in rat sciatic nerve crush injury model. Alpha-lipoic acid (ALA) was loaded into poly lactic-co-glycolic acid (PLGA) electrospun nanofibers which would release the drug in a faster manner and atorvastatin (ATR) loaded chitosan (CH) nanoparticles were embedded into PLGA nanofibers to provide sustained release. Sciatic nerve crush was generated via Yasargil aneurism clip with a holding force of 50 g/cm2. Nanofiber formulations were administered to the injured nerve immediately after trauma. Functional recovery of operated rat hind limb was evaluated using the sciatic functional index (SFI), extensor postural thrust (EPT), withdrawal reflex latency (WRL) and Basso, Beattie, and Bresnahan (BBB) test up to one month in the post-operative period at different time intervals. In addition to functional recovery assessments, ultrastructural and biochemical analyses were carried out on regenerated nerve fibers. L-929 mouse fibroblast cell line and B35 neuroblastoma cell line were used to investigate the cytotoxicity of nanofibers before in-vivo experiments. The neuroprotection potential of these novel nanocomposite fiber formulations has been demonstrated after local implantation of composite nanofiber sheets incorporating ALA and ATR, which contributed to the recovery of the motor and sensory function and nerve regeneration in a rat sciatic nerve crush injury model.


Assuntos
Atorvastatina/química , Atorvastatina/farmacologia , Nanofibras/química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Ácido Tióctico/química , Animais , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico
7.
Data Brief ; 26: 104526, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667289

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is used as plasticizer in the industry and belongs to the phthalate family which can induce tissue damage including kidney, liver, and testis as a result of elevated oxidative stress levels. Glutathione reductase (GR), Glucose-6-phosphate dehydrogenase (G6PD), glutathione S-transferase (GST), 6-phosphogluconate dehydrogenase (6PGD), enzyme activities, trace element and mineral levels were evaluated in the brain and testis tissue samples. Our data revealed that, antioxidant enzyme activities in the brain and testis samples were statistically insignificant in the DEHP administered groups compared to the control group except 400 mg/kg/day DEHP dose group in the testis samples. DEHP can disrupt trace element and mineral levels unlike antioxidant enzyme levels that may due to blood-brain and testis-blood barrier and/or short-term exposure to the DEHP. For more detailed information than the data presented in this article, please see the research article "Impact of the Di (2-Ethylhexyl) Phthalate Administration on Trace Element and Mineral Levels in Relation of Kidney and Liver Damage in Rats" [1].

8.
J Med Biochem ; 38(3): 306-316, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31156341

RESUMO

BACKGROUND: The study aimed to investigate whether timolol-treatment has a beneficial effect on pentose phosphate pathway enzyme activities such as glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGDH) enzyme activities and cAMP level in streptozotocin-induced diabetic rats in pancreatic tissues. METHODS: Diabetes was induced by streptozotocin (STZ) in 3-month old male Wistar rats. The diabetic rats were treated with timolol (5 mg/kg body weight, for 12 weeks) while the control group received saline. Enzyme activities were determined in pancreas tissue. To support our results, we performed in silico calculations, using Protein Data Bank structures. RESULTS: Timolol treatment of STZ-induced diabetic rats had no noteworthy effect on high blood-glucose levels. However, this treatment induced activities of G6PD and 6PGDH in diabetic rats. Timolol treatment significantly increased cAMP level in diabetic pancreatic tissue. We found that timolol cannot bind strongly to either G6PD or 6PGD, but there is a relatively higher binding affinity to adenylyl cyclase, responsible for cAMP production, serving as a regulatory signal via specific cAMP-binding proteins. CONCLUSIONS: Our data point out that timolol treatment has beneficial effects on the antioxidant defence mechanism enzymes in the pancreas of STZ-induced diabetic rats.

9.
Biol Trace Elem Res ; 186(2): 474-488, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29654488

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a widely used synthetic polymer in the industry. DEHP may induce reproductive and developmental toxicity, obesity, carcinogenesis and cause abnormal endocrine function in both human and wildlife. The aim of this study was to investigate trace element and mineral levels in relation of kidney and liver damage in DEHP-administered rats. Therefore, prepubertal male rats were dosed with 0, 100, 200, and 400 mg/kg/day of DEHP. At the end of the experiment, trace element and mineral levels, glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR) and glutathione S-transferase (GST) enzyme activities were evaluated in the serum, liver, and kidney samples of rats. Furthermore, serum clinical biochemistry parameters, organ/body weight ratios and histological changes were investigated to evaluate impact of DEHP more detailed. Our data indicated that sodium (Na), calcium (Ca), potassium (K), lithium (Li), rubidium (Rb) and cesium (Cs) levels significantly decreased, however iron (Fe) and selenium (Se) concentrations significantly increased in DEHP-administered groups compared to the control in the serum samples. On the other hand, upon DEHP administration, selenium concentration, G6PD and GR activities were significantly elevated, however 6-PGD activity significantly decreased compared to the control group in the kidney samples. Decreased G6PD activity was the only significant change between anti-oxidant enzyme activities in the liver samples. Upon DEHP administration, aberrant serum biochemical parameters have arisen and abnormal histological changes were observed in the kidney and liver tissue. In conclusion, DEHP may induce liver and kidney damage, also result abnormalities in the trace element and mineral levels.


Assuntos
Dietilexilftalato/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Minerais/metabolismo , Oligoelementos/metabolismo , Animais , Dietilexilftalato/administração & dosagem , Glucosefosfato Desidrogenase/sangue , Glucosefosfato Desidrogenase/metabolismo , Glutationa Redutase/sangue , Glutationa Redutase/metabolismo , Glutationa Transferase/sangue , Glutationa Transferase/metabolismo , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Minerais/sangue , Tamanho do Órgão/efeitos dos fármacos , Fosfogluconato Desidrogenase/sangue , Fosfogluconato Desidrogenase/metabolismo , Plastificantes/administração & dosagem , Plastificantes/toxicidade , Ratos Wistar , Selênio/sangue , Selênio/metabolismo , Oligoelementos/sangue
10.
Interdiscip Toxicol ; 10(4): 148-154, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30147422

RESUMO

The pentose phosphate pathway and glutathione-associated metabolism are the main antioxidant cellular defense systems. This study investigated the effects of the powerful antioxidant SMe1EC2 (2-ethoxycarbonyl-8-methoxy-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b] indolinium dichloride) on pentose phosphate pathway (PPP) and glutathione-dependent enzyme activities in aged diabetic and aged matched control rats. Diabetes was induced by streptozotocin injection in rats aged 13-15 months. Diabetic and control rats were divided into two subgroups, one untreated and one treated with SMe1EC2 (10 mg/kg/day, orally) for 4 months. SMe1EC2 ameliorated body weight loss, but not hyperglycemia of aged diabetic rats. Diabetes resulted in decreased glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD) and glutathione-S-transferase (GST), yet in unchanged glutathione reductase (GR) in the liver of aged diabetic rats. In the liver of the aged control rats, SMe1EC2 did not affect G6PDH, 6PGDH and GR, but it inhibited GST. SMe1EC2 also failed to affect diabetes-induced decline in 6PGDH, it ameliorated G6PDH but produced further decline in GST in the liver of aged diabetic rats. In the kidney of aged rats, G6PDH and GST were found to be comparable among the groups, but diabetes up-regulated 6PGDH and GR; these alterations were prevented by SMe1EC2. In the heart of aged diabetic rats, while GST remained unchanged, the recorded increase in G6PD, 6PGD, GR was prevented by SMe1EC2. Furthermore, an unchanged GR and remarkable increases in G6PD, 6PGD and GST were found in the lung of the aged diabetic group. These alterations were completely prevented by SMe1EC2. The results suggest that in aged rats SMe1EC2 can ameliorate the response of the kidney, heart and lung but not that of the liver against diabetes-induced glucotoxicity by interfering with the activity of redox network enzymes.

11.
Chem Biol Interact ; 259(Pt B): 276-281, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27106529

RESUMO

Butyrylcholinesterase (BChE) is mostly associated with the detoxification of xenobiotics. In this study to analyze the involvement of BChE in lipid metabolism, linoleic acid (LA) and α-linolenic acid (ALA) were applied to HepG2 cells along with expression of wild type human BChE. After 48 h of these treatments WST-1 cell proliferation assay, FACS analysis, RT-PCR, Oil Red O staining and activity assays were performed. Application of high concentrations of LA to HepG2 cells without BChE transfection lead to detachment of the cells. The IC50 value LA was found as 149.3 µM whereas the IC50 value for ALA could not be calculated. Hence, in order to display minimal effects on cell viability, 5 µM was chosen as appropriate concentration for LA and ALA application to HepG2 cells. Transfection of wild-type BChE plasmid to HepG2 cells yielded increased BChE expression. Application of 5 µM ALA after BChE transfection to HepG2 cells resulted in increased expression of BChE. Although with this low concentration the number of apoptotic cells was decreased with ALA treatments, LA application did not cause a similar result with the same dose. Moreover ghost cell like property was observed in LA-treated cells. Application of ALA, on the other hand, led to an overall increase in cell numbers, BChE expression and activity. Our results indicate that BChE expression might be regulated by ALA in HepG2 cells.


Assuntos
Butirilcolinesterase/metabolismo , Ácidos Graxos/metabolismo , Sobrevivência Celular , Citometria de Fluxo , Células Hep G2 , Humanos , Ácido Linoleico/metabolismo , Coloração e Rotulagem , Transfecção , Ácido alfa-Linolênico/metabolismo
12.
J Diet Suppl ; 13(3): 339-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26317558

RESUMO

This study investigated the effects of flaxseed (Linum usitatissimum L.) intake on general metabolism, pentose phosphate pathway (PPP) and glutathione-dependent enzymes in diabetic rats. Diabetes was induced by streptozotocin injection (40 mg/kg, i.p.) and the enzyme activities were determined spectrophotometrically. Diabetic and control rats were divided in two subgroups, one untreated, and one treated with flaxseed (0.714 g/kg body weight/day; orally) for 12 weeks. Flaxseed ameliorated decreased body weight (p < .05) and increased blood glucose (p < .001), triglyceride (p < .001), ALT (p < .001) and AST (p < .001) in diabetic rats. Diabetes resulted in increased glucose-6-phosphate dehydrogenase (G6PD) (p < .05) and decreased glutathione-S-transferase (GST) (p < .01), but unchanged 6-phosphogluconate dehydrogenase (6PGD) and glutathione reductase (GR) in the brain of rats. These alterations were partially improved by flaxseed in comparison to diabetic untreated group (p < .05). G6PD, 6PGD, GR were elevated (p < .001), while GST unchanged in the lung of diabetic untreated group compared to control. Flaxseed partially prevented the increase in 6PGD (p < .05) and GR (p < .01), but unaffected G6PD in the lung of diabetic rats. G6PD (p < .001), 6PGD (p < .05), GR (p < .001) were augmented, while GST showed a significant (p < .001) depletion in the pancreas of diabetic untreated rats compared to control. Diabetic alterations observed in pancreatic enzyme activities were significantly prevented by flaxseed. Furthermore, a remarkable decrease in 6PGD (p < .001) and an increase in G6PD (threefold of control) were found in the lens of diabetic untreated group that were completely prevented by flaxseed (p < .001). Flaxseed has beneficial effects against diabetes-induced glucotoxicity by modulating G6PD, 6PGD, GR and GST activities in tissues.


Assuntos
Antioxidantes , Glicemia/metabolismo , Complicações do Diabetes/prevenção & controle , Diabetes Mellitus Experimental/metabolismo , Linho , Glutationa/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Peso Corporal/efeitos dos fármacos , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Feminino , Glucosefosfato Desidrogenase/metabolismo , Glutationa Redutase/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fosfogluconato Desidrogenase/metabolismo , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Ratos Wistar , Sementes , Transaminases/sangue , Triglicerídeos/sangue
13.
Mol Cell Biochem ; 395(1-2): 177-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24947049

RESUMO

The factors with increasing diabetes-prevalence lead to significant global increases in chronic kidney disease. Since hyperglycemia generates more ROS and attenuates cellular antioxidant-defense mechanisms, numerous studies demonstrated that hyperglycemia-induced oxidative stress played a major role in the extracellular matrix expansion in tissues. Although no direct relation between activation of beta-adrenergic (ß-AR) system and kidney disease in diabetes and since ß-blockers demonstrate marked beneficial effects due to their scavenging free radicals and/or acting as an antioxidant in diabetic animal studies, the eventual objective of the present study was to determine whether timolol-treatment of streptozotocin-induced diabetic rats (5 mg/kg, daily following diabetes-induction, for 12-week) has advantage to prevent hyperglycemia-induced renal-damage via enhancing the depressed antioxidant defense in the kidney. Light microscopy data and their quantification demonstrated that timolol-treatment prevented basically glomerular hypertrophy, expansion in mesangium cell size, thickening and fibrosis in glomerular basement membrane, and accumulation of glycogen into tubular epithelial cells. Additionally, electron microscopy data demonstrated that timolol-treatment could also prevent diabetes-induced changes in the kidney tissue such as hypertrophy in podocytes, lost of filtration gaps and slit-diaphragms, and vacuolization in the distal tubular cells. Biochemical analysis basically on enzymes of antioxidant-defense system, including glutathione-S-transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase, further supported that diabetes-induced damage in the kidney is mostly dependent on the increased oxidative stress and timolol, having an antioxidant-like action, could protect the kidney against hyperglycemia-induced damage without normalization of high-blood glucose level. Consequently, it can be suggested that although ß-blockers are widely used for the treatment of cardiovascular diseases, ß-blocker therapy of diabetics seems to be a new therapeutic approach against hyperglycemia-induced kidney damage in diabetic patients.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Hipoglicemiantes/administração & dosagem , Rim/efeitos dos fármacos , Timolol/administração & dosagem , Antagonistas Adrenérgicos beta/farmacologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosefosfato Desidrogenase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Hipoglicemiantes/farmacologia , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Estreptozocina , Timolol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...