Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 68(10): 2070-2085, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32170885

RESUMO

Myelin loss in the brain is a common occurrence in traumatic brain injury (TBI) that results from impact-induced acceleration forces to the head. Fast and abrupt head motions, either resulting from violent blows and/or jolts, cause rapid stretching of the brain tissue, and the long axons within the white matter tracts are especially vulnerable to such mechanical strain. Recent studies have shown that mechanotransduction plays an important role in regulating oligodendrocyte progenitors cell differentiation into oligodendrocytes. However, little is known about the impact of mechanical strain on mature oligodendrocytes and the stability of their associated myelin sheaths. We used an in vitro cellular stretch device to address these questions, as well as characterize a mechanotransduction mechanism that mediates oligodendrocyte responses. Mechanical stretch caused a transient and reversible myelin protein loss in oligodendrocytes. Cell death was not observed. Myelin protein loss was accompanied by an increase in intracellular Ca2+ and Erk1/2 activation. Chelating Ca2+ or inhibiting Erk1/2 activation was sufficient to block the stretch-induced loss of myelin protein. Further biochemical analyses revealed that the stretch-induced myelin protein loss was mediated by the release of Ca2+ from the endoplasmic reticulum (ER) and subsequent Ca2+ -dependent activation of Erk1/2. Altogether, our findings characterize an Erk1/2-dependent mechanotransduction mechanism in mature oligodendrocytes that de-stabilizes the myelination program.


Assuntos
Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas da Mielina/deficiência , Oligodendroglia/metabolismo , Animais , Animais Recém-Nascidos , Quelantes de Cálcio/farmacologia , Ionóforos de Cálcio/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Ratos
2.
J Neurosci ; 29(19): 6367-78, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19439614

RESUMO

Although both extrinsic and intrinsic factors have been identified that orchestrate the differentiation and maturation of oligodendrocytes, less is known about the intracellular signaling pathways that control the overall commitment to differentiate. Here, we provide evidence that activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. Specifically, mTOR regulates oligodendrocyte differentiation at the late progenitor to immature oligodendrocyte transition as assessed by the expression of stage specific antigens and myelin proteins including MBP and PLP. Furthermore, phosphorylation of mTOR on Ser 2448 correlates with myelination in the subcortical white matter of the developing brain. We demonstrate that mTOR exerts its effects on oligodendrocyte differentiation through two distinct signaling complexes, mTORC1 and mTORC2, defined by the presence of the adaptor proteins raptor and rictor, respectively. Disrupting mTOR complex formation via siRNA mediated knockdown of raptor or rictor significantly reduced myelin protein expression in vitro. However, mTORC2 alone controlled myelin gene expression at the mRNA level, whereas mTORC1 influenced MBP expression via an alternative mechanism. In addition, investigation of mTORC1 and mTORC2 targets revealed differential phosphorylation during oligodendrocyte differentiation. In OPC-DRG cocultures, inhibiting mTOR potently abrogated oligodendrocyte differentiation and reduced numbers of myelin segments. These data support the hypothesis that mTOR regulates commitment to oligodendrocyte differentiation before myelination.


Assuntos
Diferenciação Celular , Oligodendroglia/citologia , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Técnicas de Cocultura , Expressão Gênica , Técnicas de Silenciamento de Genes , Proteína Básica da Mielina , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/fisiologia , Fosforilação , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/fisiologia , Serina-Treonina Quinases TOR
3.
Glia ; 57(13): 1386-92, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19229990

RESUMO

The p75 neurotrophin receptor has been implicated in the regulation of multiple cellular functions that differ depending on the cell context. We have observed that p75(NTR) is strongly induced on astrocytes as well as neurons in the hippocampal CA3 region after seizures; however, the function of this receptor on these glial cells has not been defined. We have employed a primary culture system to investigate the effects of neurotrophins on astrocytes. Treatment of hippocampal astrocytes with nerve growth factor (NGF) caused a reduction in cell number, but did not elicit an apoptotic response, in contrast to hippocampal neurons. Instead, activation of p75(NTR) by NGF attenuated proliferation induced by mitogens such as EGF or serum. These studies demonstrate the cell type specificity of neurotrophin functions in the brain.


Assuntos
Astrócitos/fisiologia , Proliferação de Células , Hipocampo/fisiologia , Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Apoptose/fisiologia , Astrócitos/citologia , Contagem de Células , Células Cultivadas , Hipocampo/citologia , Masculino , Mitógenos/metabolismo , Proteínas do Tecido Nervoso , Neurônios/fisiologia , Pilocarpina , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
4.
Glia ; 56(15): 1637-47, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18551621

RESUMO

Expression of E-cadherin in the peripheral nervous system is a highly regulated process that appears postnatally in concert with the development of myelinating Schwann cell lineage. As a major component of autotypic junctions, E-cadherin plays an important role in maintaining the structural integrity of noncompact myelin regions. In vivo, the appearance of E-cadherin in postnatal Schwann cell is accompanied by the disappearance of N-cadherin, suggesting reciprocal regulation of the two cadherins during Schwann cell development. The molecular signal that regulates the cadherin switch in Schwann cell is unclear. Using a neuron-Schwann cell co-culture system, here we show that E-cadherin expression is induced by components on the axonal membrane. We also show that the axonal effect is mediated through cAMP-dependent protein kinase A (cAMP-PKA) activation in the Schwann cell: (1) inhibition of cAMP-PKA blocks axon-induced E-cadherin expression and (2) cAMP elevation in the Schwann cell is sufficient to induce E-cadherin expression. In addition, cAMP-dependent E-cadherin expression is promoted by contact between adjacent Schwann cell membranes, suggesting its role in autotypic junction formation during myelination. Furthermore, cAMP-induced E-cadherin expression is accompanied by suppression of N-cadherin expression. Therefore, we propose that axon-dependent activation of cAMP-PKA serves as a signal that promotes cadherin switch during postnatal development of Schwann cells.


Assuntos
Caderinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Caderinas/genética , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Cocultura , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática/fisiologia , Gânglios Espinais/citologia , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Nervos Periféricos/citologia , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...