Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652352

RESUMO

Epilepsy is one of the most common neurological disorders in the world. Common epileptic drugs generally affect ion channels or neurotransmitters and prevent the emergence of seizures. However, up to a third of the patients suffer from drug-resistant epilepsy, and there is an urgent need to develop new therapeutic strategies that go beyond acute antiepileptic (antiseizure) therapies towards therapeutics that also might have effects on chronic epilepsy comorbidities such as cognitive decline and depression. The mitochondrial calcium uniporter (MCU) mediates rapid mitochondrial Ca2+ transport through the inner mitochondrial membrane. Ca2+ influx is essential for mitochondrial functions, but longer elevations of intracellular Ca2+ levels are closely associated with seizure-induced neuronal damage, which are underlying mechanisms of cognitive decline and depression. Using neuronal-specific MCU knockout mice (MCU-/-ΔN), we demonstrate that neuronal MCU deficiency reduced hippocampal excitability in vivo. Furthermore, in vitro analyses of hippocampal glioneuronal cells reveal no change in total Ca2+ levels but differences in intracellular Ca2+ handling. MCU-/-ΔN reduces ROS production, declines metabolic fluxes, and consequently prevents glioneuronal cell death. This effect was also observed under pathological conditions, such as the low magnesium culture model of seizure-like activity or excitotoxic glutamate stimulation, whereby MCU-/-ΔN reduces ROS levels and suppresses Ca2+ overload seen in WT cells. This study highlights the importance of MCU at the interface of Ca2+ handling and metabolism as a mediator of stress-related mitochondrial dysfunction, which indicates the modulation of MCU as a potential target for future antiepileptogenic therapy.

2.
Cell Mol Life Sci ; 80(5): 127, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37081190

RESUMO

Hyperexcitability is associated with neuronal dysfunction, cellular death, and consequently neurodegeneration. Redox disbalance can contribute to hyperexcitation and increased reactive oxygen species (ROS) levels are observed in various neurological diseases. NOX4 is an NADPH oxidase known to produce ROS and might have a regulating function during oxidative stress. We, therefore, aimed to determine the role of NOX4 on neuronal firing, hyperexcitability, and hyperexcitability-induced changes in neural network function. Using a multidimensional approach of an in vivo model of hyperexcitability, proteomic analysis, and cellular function analysis of ROS, mitochondrial integrity, and calcium levels, we demonstrate that NOX4 is neuroprotective by regulating ROS and calcium homeostasis and thereby preventing hyperexcitability and consequently neuronal death. These results implicate NOX4 as a potential redox regulator that is beneficial in hyperexcitability and thereby might have an important role in neurodegeneration.


Assuntos
Cálcio , Proteômica , Humanos , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
3.
Redox Biol ; 59: 102597, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599286

RESUMO

Tauopathies are a major type of proteinopathies underlying neurodegenerative diseases. Mutations in the tau-encoding MAPT-gene lead to hereditary cases of frontotemporal lobar degeneration (FTLD)-tau, which span a wide phenotypic and pathological spectrum. Some of these mutations, such as the N279K mutation, result in a shift of the physiological 3R/4R ratio towards the more aggregation prone 4R isoform. Other mutations such as V337M cause a decrease in the in vitro affinity of tau to microtubules and a reduced ability to promote microtubule assembly. Whether both mutations address similar downstream signalling cascades remains unclear but is important for potential rescue strategies. Here, we developed a novel and optimised forward programming protocol for the rapid and highly efficient production of pure cultures of glutamatergic cortical neurons from hiPSCs. We apply this protocol to delineate mechanisms of neurodegeneration in an FTLD-tau hiPSC-model consisting of MAPTN279K- or MAPTV337M-mutants and wild-type or isogenic controls. The resulting cortical neurons express MAPT-genotype-dependent dominant proteome clusters regulating apoptosis, ROS homeostasis and mitochondrial function. Related pathways are significantly upregulated in MAPTN279K neurons but not in MAPTV337M neurons or controls. Live cell imaging demonstrates that both MAPT mutations affect excitability of membranes as reflected in spontaneous and stimulus evoked calcium signals when compared to controls, albeit more pronounced in MAPTN279K neurons. These spontaneous calcium oscillations in MAPTN279K neurons triggered mitochondrial hyperpolarisation and fission leading to mitochondrial ROS production, but also ROS production through NOX2 acting together to induce cell death. Importantly, we found that these mechanisms are MAPT mutation-specific and were observed in MAPTN279K neurons, but not in MAPTV337M neurons, supporting a pathological role of the 4R tau isoform in redox disbalance and highlighting MAPT-mutation specific clinicopathological-genetic correlations, which may inform rescue strategies in different MAPT mutations.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Espécies Reativas de Oxigênio/metabolismo , Demência Frontotemporal/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Neurônios/metabolismo , Mutação , Genótipo , Isoformas de Proteínas/metabolismo
4.
Free Radic Biol Med ; 194: 337-346, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521578

RESUMO

Hyperexcitability-induced neuronal damage plays a role both in epilepsy as well as in inflammatory brain diseases such as multiple sclerosis (MS) and as such represents an important disease pathway which potentially can be targeted to mitigate neuronal damage. Dimethyl fumarate (DMF) and its pharmacologically active metabolite monomethyl fumarate (MMF) are FDA-approved therapeutics for MS, which can induce immunosuppressive and antioxidant pathways, and their neuroprotective capacity has been demonstrated in other preclinical neurological disease models before. In this study, we used an unbiased proteomic approach to identify potential new targets upon the treatment of MMF in glio-neuronal hippocampal cultures. MMF treatment results in induction of antioxidative (HMOX1, NQO1) and anaplerotic metabolic (GAPDH, PC) pathways, which correlated with reduction in ROS production, increased mitochondrial NADH-redox index and decreased NADH pool, independent of glutathione levels. Additionally, MMF reduced glycolytic capacity indicating individual intra-cellular metabolic programs within different cell types. Furthermore, we demonstrate a neuroprotective effect of MMF upon hyperexcitability in vitro (low magnesium model), where MMF prevents glio-neuronal death via reduced ROS production. These results highlight MMF as a potential new therapeutic opportunity in hyperexcitability-induced neurodegeneration.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , NAD , Proteômica , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(43): e2123476119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251998

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), are derived from yolk-sac macrophages that populate the developing CNS during early embryonic development. Once established, the microglia population is self-maintained throughout life by local proliferation. As a scalable source of microglia-like cells (MGLs), we here present a forward programming protocol for their generation from human pluripotent stem cells (hPSCs). The transient overexpression of PU.1 and C/EBPß in hPSCs led to a homogenous population of mature microglia within 16 d. MGLs met microglia characteristics on a morphological, transcriptional, and functional level. MGLs facilitated the investigation of a human tauopathy model in cortical neuron-microglia cocultures, revealing a secondary dystrophic microglia phenotype. Single-cell RNA sequencing of microglia integrated into hPSC-derived cortical brain organoids demonstrated a shift of microglia signatures toward a more-developmental in vivo-like phenotype, inducing intercellular interactions promoting neurogenesis and arborization. Taken together, our microglia forward programming platform represents a tool for both reductionist studies in monocultures and complex coculture systems, including 3D brain organoids for the study of cellular interactions in healthy or diseased environments.


Assuntos
Microglia , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Sistema Nervoso Central , Humanos , Macrófagos , Neurônios
6.
Cell Mol Life Sci ; 79(9): 479, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951110

RESUMO

Blood-brain barrier (BBB) integrity is necessary to maintain homeostasis of the central nervous system (CNS). NMDA receptor (NMDAR) function and expression have been implicated in BBB integrity. However, as evidenced in neuroinflammatory conditions, BBB disruption contributes to immune cell infiltration and propagation of inflammatory pathways. Currently, our understanding of the pathophysiological role of NMDAR signaling on endothelial cells remains incomplete. Thus, we investigated NMDAR function on primary mouse brain microvascular endothelial cells (MBMECs). We detected glycine-responsive NMDAR channels, composed of functional GluN1, GluN2A and GluN3A subunits. Importantly, application of glycine alone, but not glutamate, was sufficient to induce NMDAR-mediated currents and an increase in intracellular Ca2+ concentrations. Functionally, glycine-mediated NMDAR activation leads to loss of BBB integrity and changes in actin distribution. Treatment of oocytes that express NMDARs composed of different subunits, with GluN1 and GluN3A binding site inhibitors, resulted in abrogation of NMDAR signaling as measured by two-electrode voltage clamp (TEVC). This effect was only detected in the presence of the GluN2A subunits, suggesting the latter as prerequisite for pharmacological modulation of NMDARs on brain endothelial cells. Taken together, our findings argue for a novel role of glycine as NMDAR ligand on endothelial cells shaping BBB integrity.


Assuntos
Glicina , Receptores de N-Metil-D-Aspartato , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Glicina/metabolismo , Glicina/farmacologia , Camundongos , N-Metilaspartato/farmacologia , Receptores de Glicina , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Cell Res ; 32(1): 72-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34702947

RESUMO

It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.


Assuntos
Canais de Potássio , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead , Humanos , Camundongos , NF-kappa B , Timócitos , Timo
8.
Eur J Immunol ; 51(2): 342-353, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169379

RESUMO

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune processes remains unclear. Using mass spectrometry analysis together with epifluorescence and super-resolution single-molecule localization microscopy, we identified TASK2 channels as novel players recruited to the immunological synapse upon stimulation. TASK2 localizes at the immunological synapse, upon stimulation with CD3 antibodies, likely interacting with these molecules. Our findings suggest that, together with Kv 1.3 and KCa3.1 channels, TASK2 channels contribute to the proper functioning of the immunological synapse, and represent an interesting treatment target for T cell-mediated autoimmune disorders.


Assuntos
Sinapses Imunológicas/imunologia , Canais de Potássio de Domínios Poros em Tandem/imunologia , Animais , Doenças Autoimunes/imunologia , Complexo CD3/imunologia , Cálcio/imunologia , Linhagem Celular Tumoral , Membrana Celular/imunologia , Células Cultivadas , Feminino , Expressão Gênica/imunologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Células Jurkat , Canal de Potássio Kv1.3/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
9.
Redox Biol ; 26: 101278, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31382215

RESUMO

Many epilepsies are acquired conditions following an insult to the brain such as a prolonged seizure, traumatic brain injury or stroke. The generation of reactive oxygen species (ROS) and induction of oxidative stress are common sequelae of such brain insults and have been shown to contribute to neuronal death and the development of epilepsy. Here, we show that combination therapy targeting the generation of ROS through NADPH oxidase inhibition and the endogenous antioxidant system through nuclear factor erythroid 2-related factor 2 (Nrf2) activation prevents excessive ROS accumulation, mitochondrial depolarisation and neuronal death during in vitro seizure-like activity. Moreover, this combination therapy prevented the development of spontaneous seizures in 40% of animals following status epilepticus (70% of animals were seizure free after 8 weeks) and modified the severity of epilepsy when given to chronic epileptic animals.


Assuntos
Antioxidantes/farmacologia , Epilepsia/etiologia , Hansenostáticos/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Biomarcadores , Doença Crônica , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia/prevenção & controle , Ácido Caínico/metabolismo , Hansenostáticos/administração & dosagem , Hansenostáticos/química , Masculino , NADPH Oxidases/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo
10.
J Immunol Methods ; 461: 78-84, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30158076

RESUMO

A network of ion currents influences basic cellular T cell functions. After T cell receptor activation, changes in highly regulated calcium levels play a central role in triggering effector functions and cell differentiation. A dysregulation of these processes might be involved in the pathogenesis of several diseases. We present a mathematical model based on the NEURON simulation environment that computes dynamic calcium levels in combination with the current output of diverse ion channels (KV1.3, KCa3.1, K2P channels (TASK1-3, TRESK), VRAC, TRPM7, CRAC). In line with experimental data, the simulation shows a strong increase in intracellular calcium after T cell receptor stimulation before reaching a new, elevated calcium plateau in the T cell's activated state. Deactivation of single ion channel modules, mimicking the application of channel blockers, reveals that two types of potassium channels are the main regulators of intracellular calcium level: calcium-dependent potassium (KCa3.1) and two-pore-domain potassium (K2P) channels.


Assuntos
Sinalização do Cálcio/imunologia , Fenômenos Eletrofisiológicos/imunologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Modelos Imunológicos , Canais de Potássio de Domínios Poros em Tandem/imunologia , Linfócitos T/imunologia , Cálcio/imunologia , Humanos , Linfócitos T/citologia
11.
Mol Cancer ; 16(1): 44, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28231808

RESUMO

BACKGROUND: Extracellular matrix (ECM) is known to maintain epithelial integrity. In carcinogenesis ECM degradation triggers metastasis by controlling migration and differentiation including cancer stem cell (CSC) characteristics. The ECM-modulator inter- α-trypsin inhibitor heavy chain family member five (ITIH5) was recently identified as tumor suppressor potentially involved in impairing breast cancer progression but molecular mechanisms underlying its function are still elusive. METHODS: ITIH5 expression was analyzed using the public TCGA portal. ITIH5-overexpressing single-cell clones were established based on T47D and MDA-MB-231 cell lines. Colony formation, growth, apoptosis, migration, matrix adhesion, traction force analyses and polarization of tumor cells were studied in vitro. Tumor-initiating characteristics were analyzed by generating a metastasis mouse model. To identify ITIH5-affected pathways we utilized genome wide gene expression and DNA methylation profiles. RNA-interference targeting the ITIH5-downstream regulated gene DAPK1 was used to confirm functional involvement. RESULTS: ITIH5 loss was pronounced in breast cancer subtypes with unfavorable prognosis like basal-type tumors. Functionally, cell and colony formation was impaired after ITIH5 re-expression in both cell lines. In a metastasis mouse model, ITIH5 expressing MDA-MB-231 cells almost completely failed to initiate lung metastases. In these metastatic cells ITIH5 modulated cell-matrix adhesion dynamics and altered biomechanical cues. The profile of integrin receptors was shifted towards ß1-integrin accompanied by decreased Rac1 and increased RhoA activity in ITIH5-expressing clones while cell polarization and single-cell migration was impaired. Instead ITIH5 expression triggered the formation of epithelial-like cell clusters that underwent an epigenetic reprogramming. 214 promoter regions potentially marked with either H3K4 and /or H3K27 methylation showed a hyper- or hypomethylated DNA configuration due to ITIH5 expression finally leading to re-expression of the tumor suppressor DAPK1. In turn, RNAi-mediated knockdown of DAPK1 in ITIH5-expressing MDA-MB-231 single-cell clones clearly restored cell motility. CONCLUSIONS: Our results provide evidence that ITIH5 triggers a reprogramming of breast cancer cells with known stem CSC properties towards an epithelial-like phenotype through global epigenetic changes effecting known tumor suppressor genes like DAPK1. Therewith, ITIH5 may represent an ECM modulator in epithelial breast tissue mediating suppression of tumor initiating cancer cell characteristics which are thought being responsible for the metastasis of breast cancer.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Proteínas Quinases Associadas com Morte Celular/genética , Neoplasias Pulmonares/secundário , Proteínas Secretadas Inibidoras de Proteinases/genética , Animais , Linhagem Celular Tumoral , Epigênese Genética , Matriz Extracelular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos , Transplante de Neoplasias , Prognóstico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...