Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 5(1): e8801, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20098708

RESUMO

BACKGROUND: Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation. METHODS: In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12. CONCLUSION: This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Sequência de Bases , Carbono/metabolismo , Primers do DNA , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Interações Hospedeiro-Patógeno , Humanos , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Filogenia
2.
Biochem Soc Trans ; 37(Pt 1): 46-51, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19143600

RESUMO

A survey of archaeal genomes for the presence of homologues of bacterial and eukaryotic chaperones reveals several interesting features. All archaea contain chaperonins, also known as Hsp60s (where Hsp is heat-shock protein). These are more similar to the type II chaperonins found in the eukaryotic cytosol than to the type I chaperonins found in bacteria, mitochondria and chloroplasts, although some archaea also contain type I chaperonin homologues, presumably acquired by horizontal gene transfer. Most archaea contain several genes for these proteins. Our studies on the type II chaperonins of the genetically tractable archaeon Haloferax volcanii have shown that only one of the three genes has to be present for the organisms to grow, but that there is some evidence for functional specialization between the different chaperonin proteins. All archaea also possess genes for prefoldin proteins and for small heat-shock proteins, but they generally lack genes for Hsp90 and Hsp100 homologues. Genes for Hsp70 (DnaK) and Hsp40 (DnaJ) homologues are only found in a subset of archaea. Thus chaperone-assisted protein folding in archaea is likely to display some unique features when compared with that in eukaryotes and bacteria, and there may be important differences in the process between euryarchaea and crenarchaea.


Assuntos
Archaea/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Chaperoninas/química , Chaperoninas/genética , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ligação Proteica
3.
Mol Microbiol ; 68(6): 1366-77, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18452510

RESUMO

Dps is a nucleoid-associated protein that plays a major role in condensation of the Escherichia coli chromosome in stationary phase. Here we show that two other nucleoid-associated proteins, Fis and H-NS, can bind at the dps gene promoter and downregulate its activity. Both Fis and H-NS selectively repress the dps promoter, preventing transcription initiation by RNA polymerase containing sigma(70), the housekeeping sigma factor, but not by RNA polymerase containing sigma(38), the stationary-phase sigma factor. Fis represses by trapping RNA polymerase containing sigma(70) at the promoter. In contrast, H-NS functions by displacing RNA polymerase containing sigma(70), but not RNA polymerase containing sigma(38). Dps levels are known to be very low in exponentially growing cells and rise sharply as cells enter stationary phase. Conversely, Fis levels are high in growing cells but fall to nearly zero in stationary-phase cells. Our data suggest a simple model to explain how the Dps-dependent super-compaction of the folded chromosome is triggered as cell growth ceases.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Dados de Sequência Molecular , Salmonella typhimurium/genética , Alinhamento de Sequência , Deleção de Sequência , Fator sigma/metabolismo
4.
Nucleic Acids Res ; 34(16): 4642-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16963779

RESUMO

The Escherichia coli chromosome is condensed into an ill-defined structure known as the nucleoid. Nucleoid-associated DNA-binding proteins are involved in maintaining this structure and in mediating chromosome compaction. We have exploited chromatin immunoprecipitation and high-density microarrays to study the binding of three such proteins, FIS, H-NS and IHF, across the E.coli genome in vivo. Our results show that the distribution of these proteins is biased to intergenic parts of the genome, and that the binding profiles overlap. Hence some targets are associated with combinations of bound FIS, H-NS and IHF. In addition, many regions associated with FIS and H-NS are also associated with RNA polymerase.


Assuntos
DNA Bacteriano/metabolismo , DNA Intergênico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Genoma Bacteriano , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Cromossomos Bacterianos , Proteínas de Ligação a DNA/isolamento & purificação , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
PLoS Pathog ; 2(8): e81, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16933988

RESUMO

Histone-like nucleoid structuring protein (H-NS) is a modular protein that is associated with the bacterial nucleoid. We used chromatin immunoprecipitation to determine the binding sites of H-NS and RNA polymerase on the Salmonella enterica serovar Typhimurium chromosome. We found that H-NS does not bind to actively transcribed genes and does not co-localize with RNA polymerase. This shows that H-NS principally silences gene expression by restricting the access of RNA polymerase to the DNA. H-NS had previously been shown to preferentially bind to curved DNA in vitro. In fact, at the genomic level we discovered that the level of H-NS binding correlates better with the AT-content of DNA. This is likely to have evolutionary consequences because we show that H-NS binds to many Salmonella genes acquired by lateral gene transfer, and functions as a gene silencer. The removal of H-NS from the cell causes un-controlled expression of several Salmonella pathogenicity islands, and we demonstrate that this has deleterious consequences for bacterial fitness. Our discovery of this novel role for H-NS may have implications for the acquisition of foreign genes by enteric bacteria.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Transferência Genética Horizontal , Salmonella enterica/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Evolução Biológica , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade
6.
Biochem J ; 391(Pt 2): 203-13, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15966862

RESUMO

Temperature is a primary environmental stress to which micro-organisms must be able to adapt and respond rapidly. Whereas some bacteria are restricted to specific niches and have limited abilities to survive changes in their environment, others, such as members of the Enterobacteriaceae, can withstand wide fluctuations in temperature. In addition to regulating cellular physiology, pathogenic bacteria use temperature as a cue for activating virulence gene expression. This work confirms that the nucleoid-associated protein H-NS (histone-like nucleoid structuring protein) is an essential component in thermoregulation of Salmonella. On increasing the temperature from 25 to 37 degrees C, more than 200 genes from Salmonella enterica serovar Typhimurium showed H-NS-dependent up-regulation. The thermal activation of gene expression is extremely rapid and change in temperature affects the DNA-binding properties of H-NS. The reduction in gene repression brought about by the increase in temperature is concomitant with a conformational change in the protein, resulting in the decrease in size of high-order oligomers and the appearance of increasing concentrations of discrete dimers of H-NS. The present study addresses one of the key complex mechanisms by which H-NS regulates gene expression.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Temperatura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Temperatura Alta , Regiões Promotoras Genéticas/genética , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Fatores de Transcrição/genética , Regulação para Cima
7.
Microbiology (Reading) ; 150(Pt 7): 2037-2053, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15256548

RESUMO

Fis is a key DNA-binding protein involved in nucleoid organization and modulation of many DNA transactions, including transcription in enteric bacteria. The regulon of genes whose expression is influenced by Fis in Salmonella enterica serovar Typhimurium (S. typhimurium) has been defined by DNA microarray analysis. These data suggest that Fis plays a central role in coordinating the expression of both metabolic and type III secretion factors. The genes that were most strongly up-regulated by Fis were those involved in virulence and located in the pathogenicity islands SPI-1, SPI-2, SPI-3 and SPI-5. Similarly, motility and flagellar genes required Fis for full expression. This was shown to be a direct effect as purified Fis protein bound to the promoter regions of representative flagella and SPI-2 genes. Genes contributing to aspects of metabolism known to assist the bacterium during survival in the mammalian gut were also Fis-regulated, usually negatively. This category included components of metabolic pathways for propanediol utilization, biotin synthesis, vitamin B(12) transport, fatty acids and acetate metabolism, as well as genes for the glyoxylate bypass of the tricarboxylic acid cycle. Genes found to be positively regulated by Fis included those for ethanolamine utilization. The data reported reveal the central role played by Fis in coordinating the expression of both housekeeping and virulence factors required by S. typhimurium during life in the gut lumen or during systemic infection of host cells.


Assuntos
Proteínas de Bactérias/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Proteínas de Bactérias/genética , Fator Proteico para Inversão de Estimulação/genética , Perfilação da Expressão Gênica , Resposta ao Choque Térmico , Transcrição Gênica , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...