Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 49(10): 4433-9, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20397713

RESUMO

A series of five new alpha-hydroxy acid-containing chelates inspired by photoactive marine siderophores, along with their Fe(III) complexes, have been synthesized and characterized. These chelates, designated X-Sal-AHA, each contributes a bidentate salicylidene moiety (X-Sal, X = 5-NO(2), 3,5-diCl, H, 3,5-di-tert-butyl, or 3-OCH(3) on the phenolate ring) and a bidentate alpha-hydroxy acid moiety (AHA). The X-ray crystal structure of Na[Fe(3)(3,5-diCl-Sal-AHA)(3)(mu(3)-OCH(3))] shows an Fe(III) trimer with the triply deprotonated, trianionic ligands each spanning two Fe(III)'s that are bridged by the hydroxyl group of the ligand. Additionally, a mu(3)-methoxy anion caps the Fe(III)(3) face. Electrospray ionization mass spectra demonstrate that this structure is representative of the Fe(III) complexes of all five derivatives in methanol solution, with the exception of the X = 3,5-di-t-Bu derivative having a mu(3)-OH bridge rather than a methoxy bridge. Stability constants determined from reduction potentials range from 10(34) for the 5-NO(2) derivative to >10(40) for the 3,5-di-tBu derivative. All five complexes are photoactive when irradiated by sunlight, with the relative rate of photolysis as monitored by Fe(II) transfer correlating with the Hammett sigma(+) parameter for the phenolate ring substituents.


Assuntos
Hidroxiácidos/química , Quelantes de Ferro/química , Ferro/química , Luz , Absorção , Dicroísmo Circular , Elétrons , Quelantes de Ferro/síntese química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Espectrofotometria Ultravioleta
2.
J Occup Environ Hyg ; 6(12): 735-44, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19894174

RESUMO

Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from < 32 microm up to 212 microm) using dilute aqueous ammonium bifluoride (ABF) solution were obtained under various conditions. Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity of the BeO material. Comparison of dissolution kinetics data shows that as particle diameter approximately doubles, extraction time is increased by a factor of about 1.5, which is consistent with the influence of porosity on dissolution.


Assuntos
Berílio/química , Fracionamento Químico/métodos , Fluoretos/química , Compostos de Amônio Quaternário/química , Compostos de Amônio , Berílio/isolamento & purificação , Monitoramento Ambiental , Cinética , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectrometria de Fluorescência/métodos , Temperatura
3.
J Occup Environ Hyg ; 4(3): 215-23, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17237027

RESUMO

A standardized procedure for collecting dust samples from surfaces using a micro-vacuum sampling technique was evaluated. Experiments were carried out to investigate the collection efficiency of the vacuum sampling method described in ASTM Standard D7144, "Standard Practice for Collection of Surface Dust by Micro-Vacuum Sampling for Subsequent Metals Determination." Weighed masses ( approximately 5, approximately 10 and approximately 25 mg) of three NIST Standard Reference Materials (SRMs) were spiked onto surfaces of various substrates. The SRMs used were: (1) Powdered Lead-Based Paint; (2) Urban Particulate Matter; and (3) Trace Elements in Indoor Dust. Twelve different substrate materials were chosen to be representative of surfaces commonly encountered in occupational and/or indoor settings: (1) wood, (2) tile, (3) linoleum, (4) vinyl, (5) industrial carpet, (6) plush carpet, (7,8) concrete block (painted and unpainted), (9) car seat material, (10) denim, (11) steel, and (12) glass. Samples of SRMs originally spiked onto these surfaces were collected using the standardized micro-vacuum sampling procedure. Gravimetric analysis of material collected within preweighed Accucapinserts (housed within the samplers) was used to measure SRM recoveries. Recoveries ranged from 21.6% (+/- 10.4%, 95% confidence limit [CL]) for SRM 1579 from industrial carpet to 59.2% (+/- 11.0%, 95% CL) for SRM 1579 from glass. For most SRM/substrate combinations, recoveries ranged from approximately 25% to approximately 50%; variabilities differed appreciably. In general, SRM recoveries were higher from smooth and hard surfaces and lower from rough and porous surfaces. Material captured within collection nozzles attached to the sampler inlets was also weighed. A significant fraction of SRM originally spiked onto substrate surfaces was captured within collection nozzles. Percentages of SRMs captured within collection nozzles ranged from approximately 13% (+/- 4 - +/- 5%, 95% CLs) for SRMs 1579 and 2583 from industrial carpet to approximately 45% (+/- 7 - +/- 26%, 95% CLs) for SRM 1648 from glass, tile and steel. For some substrates, loose material from the substrate itself (i.e., substrate particles and fibers) was sometimes collected along with the SRM, both within Accucaps as well as collection nozzles. Co-collection of substrate material can bias results and contribute to sampling variability. The results of this work have provided performance data on the standardized micro-vacuum sampling procedure.


Assuntos
Técnicas de Química Analítica/métodos , Poeira/análise , Monitoramento Ambiental/métodos , Manejo de Espécimes/métodos , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Humanos , Microscopia Eletrônica , Saúde Ocupacional , Padrões de Referência , Sensibilidade e Especificidade , Vácuo
4.
J Environ Monit ; 8(6): 619-24, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16767228

RESUMO

Beryllium is widely used in industry for its unique properties; however, occupational exposure to beryllium particles can cause potentially fatal disease. Consequently, exposure limits for beryllium particles in air and action levels on surfaces have been established to reduce exposure risks for workers. Field-portable monitoring methods for beryllium are desired in order to facilitate on-site measurement of beryllium in the workplace, so that immediate action can be taken to protect human health. In this work, a standardized, portable fluorescence method for the determination of trace beryllium in workplace samples, i.e., air filters and dust wipes, was validated through intra- and inter-laboratory testing. The procedure entails extraction of beryllium in 1% ammonium bifluoride (NH(4)HF(2), aqueous), followed by fluorescence measurement of the complex formed between beryllium ion and hydroxybenzoquinoline sulfonate (HBQS). The method detection limit was estimated to be less than 0.02 microg Be per air filter or wipe sample, with a dynamic range up to greater than 10 microg. The overall method accuracy was shown to satisfy the accuracy criterion (A< or = +/-25%) for analytical methods promulgated by the US National Institute for Occupational Safety and Health (NIOSH). Interferences from numerous metals tested (in >400-fold excess concentration compared to that of beryllium) were negligible or minimal. The procedure was shown to be effective for the dissolution and quantitative detection of beryllium extracted from refractory beryllium oxide particles. An American Society for Testing and Materials (ASTM) International voluntary consensus standard based on the methodology has recently been published.


Assuntos
Poluentes Atmosféricos/análise , Berílio/análise , Oligoelementos/análise , Local de Trabalho , Fluorescência , National Institute for Occupational Safety and Health, U.S. , Estados Unidos
5.
Inorg Chem ; 44(15): 5222-8, 2005 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16022519

RESUMO

Two new ligands consisting of bis(oxime) amine units tethered by a bridge have been synthesized. Their nickel chloride and nickel nitrate complexes have also been synthesized and characterized by X-ray crystallography, FTIR, mass spectrometry, and elemental analysis. One of these ligands, L1 (N,N,N',N'-tetra(1-propan-2-onyl oxime)-diamino-m-xylene), is always dinucleating, while the other ligand, L2 (N,N,N',N'-tetra(1-propan-2-onyl-oxime)-1,3-diaminopropane), shows an unusual anion dependence on the nuclearity. When nickel chloride is used, the ligand acts in a dinucleating manner and coordinates two nickels; however, when nickel nitrate is used, the ligand acts in a monodentate fashion and coordinates only one nickel. Once the mononuclear complex is formed, it is not possible to add a second nickel if Ni(NO(3))(2) is used as the nickel source; it is possible, however, to add a second nickel if NiCl(2) is used as the nickel source. The dinuclear complex can be converted to the mononuclear one by either using silver nitrate to exchange the chloride anions for nitrates or by dissolving the complex in water. Ni(2)(L1)Cl(4)(DMF)(2).DMF: orthorhombic, P2(1)2(1)2(1), a = 12.2524(11) A, b = 16.6145(15) A, c = 20.1234(19) A, V = 4096.5(6) A(3), Z = 4. [Ni(2)(L2)Cl(4)(DMF)](2).2DMF: triclinic, P-1, a = 12.5347(5) A, b = 12.5403(5) A, c = 14.3504(6) A, alpha = 67.348(1) degrees , beta = 69.705(1) degrees , gamma = 81.549(1) degrees , V = 1952.25(14) A(3), Z = 1. Ni(L2).(NO(3))(2): monoclinic, P2(1)/n, a = 9.6738(3) A, b = 30.2229(9) A, c = 15.8238(5) A, beta = 97.995(1) degrees , V = 4581.4(2) A(3), Z = 8.


Assuntos
Aminas/síntese química , Níquel/química , Compostos Organometálicos/síntese química , Oximas/síntese química , Xilenos/síntese química , Aminas/química , Ânions/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Oximas/química , Xilenos/química
6.
Inorg Chem ; 42(3): 717-28, 2003 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-12562185

RESUMO

A library of tripodal amine ligands with two oxime donor arms and a variable coordinating or noncoordinating third arm has been synthesized, including two chiral ligands based on l-phenylalanine. Their Ni(II) complexes have been synthesized and characterized by X-ray crystallography, UV-vis absorption, circular dichroism, and FTIR spectroscopy, mass spectrometry, and room-temperature magnetic susceptibility. At least one crystal structure is reported for all but one Ni/ligand combination. All show a six-coordinate pseudo-octahedral coordination geometry around the nickel center, with the bis(oxime)amine unit coordinating in a facial mode. Three distinct structure types are observed: (1) for tetradentate ligands, six-coordinate monomers are formed, with anions and/or solvent filling out the coordination sphere; (2) for tridentate ligands, six-coordinate monomers are formed with Ni(II)(NO(3))(2), with one monodentate and one bidentate nitrate filling the remaining coordination positions; (3) for tridentate ligands, six-coordinate, bis(mu-Cl) dimers are formed with Ni(II)Cl(2), with one terminal and two bridging chlorides filling the coordination sphere. The UV-vis absorption spectra of the complexes show that the value of 10 Dq varies according to the nature of the third arm of the ligand. The trend based on the third arm follows the order alkyl/aryl < amide < carboxylate < alcohol < pyridyl < oxime.


Assuntos
Técnicas de Química Combinatória , Níquel/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Fenilalanina , Aminas/síntese química , Aminas/química , Dicroísmo Circular , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oximas/síntese química , Oximas/química , Fenilalanina/análogos & derivados , Fenilalanina/síntese química , Fenilalanina/química , Espectrofotometria Ultravioleta
7.
Inorg Chem ; 41(9): 2307-9, 2002 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-11978089

RESUMO

The ligand tris(2-hydroxyiminopropyl)amine (Ox(3)H(3)) binds to nickel(II) in multiple protonation states. In the neutral state, the X-ray crystal structure of the monomeric complex [Ni(Ox(3)H(3))(NO(3))(H(2)O)](NO(3)).(H(2)O), 1, has six-coordinate pseudo-octahedral geometry, with binding of the amine and three oxime nitrogens, a nitrate, and a water. In the mono-deprotonated form, the X-ray crystal structure shows a dimer, [Ni(Ox(3)H(2))(CH(3)CN)](2)(ClO(4))(2), 2, which has bridging oximate groups and a Ni-Ni distance of 3.575 A. The fully deprotonated complex, 3, shows significantly low Ni(II) oxidation potentials at -390 and +165 mV (versus Fc(+)/Fc). Complex 3 shows reactivity when exposed to O(2), consuming multiple O(2) equivalents and turning from the purple 3 to a dark brown complex, 4. Complex 4 has an EPR spectrum consistent with Ni(III), but spin quantitation accounts for only about 10% of the total Ni, consistent with turnover of the Ni oxidation states. This Ni(II)/O(2) system oxidizes triphenylphosphine to its oxide, with incorporation of the isotopic label from O(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...