Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 219(3): 595-605, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19170125

RESUMO

During endochondral bone formation, chondrocytes undergo terminal differentiation, during which the rate of proliferation decreases, cells become hypertrophic, and the extracellular matrix is altered by production of collagen X, as well as proteins required for matrix mineralization. This maturation process is responsible for most longitudinal bone growth, both during embryonic development and in postnatal long bone growth plates. Among the major signaling molecules implicated in regulation of this process are the positive regulators thyroid hormone (T3) and bone morphogenetic proteins (BMPs). Both T3 and BMPs are essential for endochondral bone formation and cannot compensate for each other, suggesting interaction of the two signaling pathways. We have analyzed the temporal and spatial expression patterns of numerous genes believed to play a role in chondrocyte maturation. Our results show that T3 stimulates collagen X gene expression in cultured chondrocytres with kinetics and magnitude similar to those observed in vivo. Stimulation of collagen X gene expression by T3 occurs only after a significant delay, implying that this hormone may act indirectly. We show further that T3 rapidly stimulates production of BMP 4, concomitant with a decrease in the BMP inhibitor Noggin, potentially resulting in a net increase in BMP signaling. Finally, inhibition of BMP signaling with exogenous Noggin prevents T3 stimulation of collagen X expression, indicating that BMP signaling is essential for this process. These data position thyroid hormone at the top of a T3/BMP cascade, potentially explaining why both pathways are essential for chondrocyte maturation. J. Cell. Physiol. 219: 595-605, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno Tipo X/genética , Tri-Iodotironina/farmacologia , Animais , Sequência de Bases , Proteínas de Transporte/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Condrócitos/citologia , Primers do DNA/genética , Expressão Gênica/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
2.
J Cell Biochem ; 99(1): 269-78, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16598786

RESUMO

Retinoids are essential for the terminal differentiation of chondrocytes during endochondral bone formation. This maturation process is characterized by increased cell size, expression of a unique extracellular matrix protein, collagen X, and eventually by mineralization of the matrix. Retinoids stimulate chondrocyte maturation in cultured cells and experimental animals, as well as in clinical studies of synthetic retinoids; furthermore, retinoid antagonists prevent chondrocyte maturation in vivo. However, the mechanisms by which retinoids regulate this process are poorly understood. We and others showed previously that retinoic acid (RA) stimulates expression of genes encoding bone morphogenetic proteins (BMPs), suggesting that retinoid effects on chondrocyte maturation may be indirect. However, we now show that RA also directly stimulates transcription of the collagen X gene promoter. We have identified three RA response element (RARE) half-sites in the promoter, located 2,600 nucleotides upstream from the transcription start site. These three half-sites function as two overlapping RAREs that share the middle half-site. Ablation of the middle half-site destroys both elements, abolishing RA receptor (RAR) binding and drastically decreasing RA stimulation of transcription. Ablation of each of the other two half-sites destroys only one RARE, resulting in an intermediate level of RAR binding and transcriptional stimulation. These results, together with our previously published data, indicate that retinoids stimulate collagen X transcription both directly, through activation of RARs, and indirectly, through increased BMP production.


Assuntos
Condrócitos/fisiologia , Colágeno Tipo X/genética , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Retinoides/farmacologia , Animais , Tamanho Celular , Células Cultivadas , Embrião de Galinha , Condrócitos/efeitos dos fármacos , Colágeno Tipo X/efeitos dos fármacos , Receptores do Ácido Retinoico/efeitos dos fármacos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Elementos de Resposta/efeitos dos fármacos , Retinoides/metabolismo , Sítio de Iniciação de Transcrição , Tretinoína/metabolismo , Tretinoína/farmacologia , Receptor gama de Ácido Retinoico
3.
Cell Commun Signal ; 3(1): 3, 2005 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-15691373

RESUMO

BACKGROUND: During endochondral bone formation, the hypertrophy of chondrocytes is accompanied by selective expression of several genes including type X collagen and alkaline phosphatase. This expression is stimulated by inducers including BMPs and ascorbate. A 316 base pair region of the type X collagen (Col X) promoter has been previously characterized as the site required for BMP regulation. The intent of this study was to examine the role of Mitogen Activated Protein (MAP) and related kinase pathways in the regulation of Col X transcription and alkaline phosphatase activity in pre-hypertrophic chick chondrocytes. RESULTS: Using a luciferase reporter regulated by the BMP-responsive region of the type X collagen promoter, we show that promoter activity is increased by inhibition of extra-cellular signal regulated kinases 1 or 2 (ERK1/2). In contrast the ability of BMP-2 to induce alkaline phosphatase activity is little affected by ERK1/2 inhibition. The previously demonstrated stimulatory affect of p38 on Col X was shown to act specifically at the BMP responsive region of the promoter. The inhibitory effect of the ERK1/2 pathway and stimulatory effect of the p38 pathway on the Col X promoter were confirmed by the use of mutant kinases. Inhibition of upstream kinases: protein kinase C (PKC) and phosphatidylinositol 3-(PI3) kinase pathways increased basal Col X activity but had no effect on the BMP-2 induced increase. In contrast, ascorbate had no effect on the BMP-2 responsive region of the Col X promoter nor did it alter the increase in promoter activity induced by ERK1/2 inhibition. The previously shown increase in alkaline phosphatase activity induced by ascorbate was not affected by any kinase inhibitors examined. However some reduction in the alkaline phosphatase activity induced by the combination of BMP-2 and ascorbate was observed with ERK1/2 inhibition. CONCLUSION: Our results demonstrate that ERK1/2 plays a negative role while p38 plays a positive role in the BMP-2 activated transcription of type X collagen. This regulation occurs specifically at the BMP-2 responsive promoter region of Col X. Ascorbate does not modulate Col X at this region indicating that BMP-2 and ascorbate exert their action on chondrocyte hypertrophy via different transcriptional pathways. MAP kinases seem to have only a modest effect on alkaline phosphatase when activity is induced by the combination of both BMP-2 and ascorbate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...