Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 48(9): 1667-1677, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17521350

RESUMO

PURPOSE: Previous quantitative trait loci (QTL) mapping studies from our laboratory identified a 6.6 Mb segment of distal chromosome 1 that contains a gene (or genes) having a strong influence on the difference in seizure susceptibility between C57BL/6 (B6) and DBA/2 (D2) mice. A gene transfer strategy involving a bacterial artificial chromosome (BAC) DNA construct that contains several candidate genes from the critical interval was used to test the hypothesis that a strain-specific variation in one (or more) of the genes is responsible for the QTL effect. METHODS: Fertilized oocytes from a seizure-sensitive congenic strain (B6.D2-Mtv7a/Ty-27d) were injected with BAC DNA and three independent founder lines of BAC-transgenic mice were generated. Seizure susceptibility was quantified by measuring maximal electroshock seizure threshold (MEST) in transgenic mice and nontransgenic littermates. RESULTS: Seizure testing documented significant MEST elevation in all three transgenic lines compared to littermate controls. Allele-specific RT-PCR analysis confirmed gene transcription from genome-integrated BAC DNA and copy-number-dependent phenotypic effects were observed. CONCLUSIONS: Results of this study suggest that the gene(s) responsible for the major chromosome 1 seizure QTL is found on BAC RPCI23-157J4 and demonstrate the utility of in vivo gene transfer for studying quantitative trait genes in mice. Further characterization of this transgenic model will provide new insight into mechanisms of seizure susceptibility.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Técnicas de Transferência de Genes , Locos de Características Quantitativas/genética , Convulsões/genética , Animais , Western Blotting , Encéfalo/metabolismo , Mapeamento Cromossômico , Modelos Animais de Doenças , Eletrochoque , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Modelos Genéticos , Convulsões/metabolismo
2.
Neurosci Lett ; 395(1): 28-32, 2006 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-16289320

RESUMO

Many studies have shown that acupuncture can contribute to the biochemical balance in the central nervous system and maintenance or recovery of homeostasis. It is well known that chronic administration of ethanol may produce depletion or sensitization of extracellular dopamine levels in the nucleus accumbens. The present study was designed to investigate the effects of acupuncture on chronic ethanol-induced changes in extracellular dopamine levels in the nucleus accumbens shell (using in vivo microdialysis in unanesthetized rats). Male Sprague-Dawley rats were treated with 3 g/kg/day of ethanol (20%, w/v) or saline by intraperitoneal injection for 21 days. Following 72 h of ethanol withdrawal, acupuncture was applied at bilateral Shenmen (HT7) points for 1 min. Different group of rats using the same paradigm of ethanol treatment were acupunctured at the same points after the systemic ethanol challenge (3 g/kg, i.p.). Acupuncture at the specific acupoint HT7, but not at control points (PC6 or tail) significantly prevented both a decrease of extracellular dopamine levels in the nucleus accumbens during ethanol withdrawal and an increase in accumbal dopamine levels induced by the ethanol challenge. These results provided strong evidence that stimulation of the specific acupoint HT7 helps to normalize the release of dopamine in the mesolimbic system following chronic ethanol treatment.


Assuntos
Terapia por Acupuntura/métodos , Alcoolismo/metabolismo , Dopamina/metabolismo , Etanol/efeitos adversos , Núcleo Accumbens/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/terapia , Alcoolismo/terapia , Animais , Doença Crônica , Homeostase/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
3.
Neurosci Lett ; 387(1): 17-21, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16055266

RESUMO

Acupuncture as a therapeutic intervention has been used for the treatment of many functional disorders including substance abuse. However, there are still many unanswered question about the basic mechanism underlying acupuncture's effectiveness in the treatment of drug addiction. Repeated injection of psycostimulants or morphine can produce behavioral and neurochemical sensitization and have been used as a model for studying drug addiction. The present study was designed to investigate the effect of acupuncture on repeated morphine-induced changes in extracellular dopamine levels using in vivo microdialysis and repeated morphine-induced behavioral changes. Male Sprague-Dawley rats were treated with saline or increasing doses of morphine (10, 20 and 40 mg/kg, s.c., twice daily for 3 days). Following 15 days of withdrawal, acupuncture was applied at bilateral Shenmen (HT7) points for 1 min after the systemic challenge with morphine HCl (5 mg/kg, s.c.). Results showed that acupuncture at the specific acupoint HT7, but not at control points (TE8 and tail) significantly decreased both dopamine release in the nucleus accumbens and behavioral hyperactivity induced by a systemic morphine challenge. These results suggest that the therapeutic effect of acupuncture on morphine addiction occurs through inhibition of neurochemical and behavioral sensitization to morphine.


Assuntos
Acupuntura , Dopamina/metabolismo , Dependência de Morfina/terapia , Morfina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Agitação Psicomotora/terapia , Pontos de Acupuntura , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Dependência de Morfina/fisiopatologia , Entorpecentes/farmacologia , Núcleo Accumbens/metabolismo , Agitação Psicomotora/fisiopatologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
4.
Neuropsychopharmacology ; 30(4): 742-6, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15508023

RESUMO

C57BL/6 (B6) and DBA/2 (D2) mice exhibit disparate behavior when tested for voluntary morphine intake in a two-bottle choice drinking paradigm with B6 mice consuming 10 times more drug than D2 mice. Previous genetic mapping studies identified a locus, Mop2, on the proximal part of chromosome 10 that explained over half of the genetic variance in this mouse model of opioid self-administration. We constructed a set of reciprocal congenic strains between B6 and D2 mice in which the proximal portion of chromosome 10 has been introgressed from one strain onto the background of the other. We tested mice from this pair of reciprocal strains together with progenitor B6 and D2 mice in a two-bottle choice drinking paradigm with morphine and quinine. The results showed that introgression of chromosome 10 alleles from the B6 strain onto a D2 genetic background increased voluntary morphine intake four-fold compared to progenitor D2 mice. Preference for morphine was also increased significantly in D2.B6-Mop2 mice compared to progenitor D2 mice. Conversely, introgression of chromosome 10 alleles from the D2 strain onto a B6 genetic background decreased morphine intake by half compared to progenitor B6 mice in B6.D2 -Mop2 mice; however, high morphine preference was maintained in this congenic strain most likely due to strong quinine aversion. When quinine was eliminated from the control bottle, morphine preference in B6.D2-Mop2 mice was decreased significantly relative to B6 and D2.B6-Mop2 mice. Overall, these data confirm the existence of a gene(s) on chromosome 10 proximal to D10Mit124 that has a strong influence on the difference in morphine drinking behavior between B6 and D2 mice.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Dependência de Morfina/genética , Morfina/farmacologia , Locos de Características Quantitativas/genética , Alelos , Animais , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Preferências Alimentares/efeitos dos fármacos , Preferências Alimentares/fisiologia , Genótipo , Endogamia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Dependência de Morfina/metabolismo , Dependência de Morfina/fisiopatologia , Mutação/genética , Quinina/farmacologia , Especificidade da Espécie
5.
Neurosci Lett ; 369(3): 234-8, 2004 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-15464271

RESUMO

Clinical trials are currently underway to determine the effectiveness of acupuncture in the treatment of drug abuse. However, there are still many unanswered questions about the basic mechanisms of acupuncture. Studies have shown that the GABA(B) receptor system may play a significant modulatory role in the mesolimbic system in drug abuse, including ethanol. The in vivo microdialysis study was designed to investigate the effect of acupuncture on acute ethanol-induced dopamine release in the nucleus accumbens and the potential role of the GABA(B) receptor system in acupuncture. Male Sprague-Dawley rats were administered with the highly selective GABA(B) antagonist SCH 50911 (3 mg/kg, i.p.) 1h prior to an intraperitoneal injection of ethanol (1 g/kg). Immediately after ethanol treatment, acupuncture was given at bilateral Shenmen (HT7) points for 1min. Acupuncture at the specific acupoint HT7, but not at control points (PC6 or tail) significantly decreased dopamine release in the nucleus accumbens. Inhibition of dopamine release by acupuncture was completely prevented by SCH 50911. These results suggest that stimulation of specific acupoints inhibits ethanol-induced dopamine release by modulating GABA(B) activity and imply that acupuncture may be effective in blocking the reinforcing effects of ethanol.


Assuntos
Acupuntura , Depressores do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Etanol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores de GABA-B/fisiologia , Pontos de Acupuntura , Animais , Antagonistas de Receptores de GABA-B , Masculino , Morfolinas/farmacologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/efeitos da radiação , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos da radiação , Ratos , Ratos Sprague-Dawley
6.
Mamm Genome ; 15(4): 239-51, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15112102

RESUMO

Previous quantitative trait loci (QTL) mapping studies document that the distal region of mouse Chromosome (Chr) 1 contains a gene(s) that is in large part responsible for the difference in seizure susceptibility between C57BL/6 (B6) (relatively seizure-resistant) and DBA/2 (D2) (relatively seizure-sensitive) mice. We now confirm this seizure-related QTL ( Szs1) using reciprocal, interval-specific congenic strains and map it to a 6.6-Mb segment between Pbx1 and D1Mit150. Haplotype conservation between strains within this segment suggests that Szs1 may be localized more precisely to a 4.1-Mb critical interval between Fcgr3 and D1Mit150. We compared the coding region sequences of candidate genes between B6 and D2 mice using RT-PCR, amplification from genomic DNA, and database searching and discovered 12 brain-expressed genes with SNPs that predict a protein amino acid variation. Of these, the most compelling seizure susceptibility candidate is Kcnj10. A survey of the Kcnj10 SNP among other inbred mouse strains revealed a significant effect on seizure sensitivity such that most strains possessing a haplotype containing the B6 variant of Kcnj10 have higher seizure thresholds than those strains possessing the D2 variant. The unique role of inward-rectifying potassium ion channels in membrane physiology coupled with previous strong association between ion channel gene mutations and seizure phenotypes puts even greater focus on Kcnj10 in the present model. In summary, we confirmed a seizure-related QTL of large effect on mouse Chr 1 and mapped it to a finely delimited region. The critical interval contains several candidate genes, one of which, Kcnj10, exhibits a potentially important polymorphism with regard to fundamental aspects of seizure susceptibility.


Assuntos
Cromossomos de Mamíferos/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Convulsões/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico/veterinária , Cruzamentos Genéticos , Suscetibilidade a Doenças , Eletrochoque/veterinária , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Locos de Características Quantitativas/genética , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de DNA
7.
J Neuropathol Exp Neurol ; 61(7): 634-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12125742

RESUMO

Inhibition of mitochondrial respiratory chain function may contribute to dopaminergic neurodegeneration in the substantia nigra (SN) of patients with Parkinson disease (PD). Since large-scale structural changes (e.g. deletions and rearrangements in mitochondrial DNA [mtDNA]) have been associated with mitochondrial dysfunction, we tested the hypothesis that increased total mtDNA deletions/rearrangements are associated with neurodegeneration in PD. This study employed a well-established technique, long-extension polymerase chain reaction (LX-PCR), to detect the multiple mtDNA deletions/rearrangements in the SN of patients with PD, multiple system atrophy (MSA), dementia with Lewy bodies (DLB), Alzheimer disease (AD), and age-matched controls. We also compared the total mtDNA deletions/rearrangements in different brain regions of PD patients. The results demonstrated that both the number and variety of mtDNA deletions/rearrangements were selectively increased in the SN of PD patients compared to patients with other movement disorders as well as patients with AD and age-matched controls. In addition, increased mtDNA deletions/rearrangements were observed in other brain regions in PD patients, indicating that mitochondrial dysfunction is not just limited to the SN of PD patients. These data suggest that accumulation of total mtDNA deletions/rearrangements is a relatively specific characteristic of PD and may be one of the contributing factors leading to mitochondrial dysfunction and neurodegeneration in PD.


Assuntos
Dano ao DNA/genética , DNA Mitocondrial/genética , Deleção de Genes , Mutação/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Análise Mutacional de DNA , Feminino , Humanos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Neurônios/patologia , Doença de Parkinson/patologia , Reação em Cadeia da Polimerase , Substância Negra/patologia , Substância Negra/fisiopatologia
8.
Pharmacol Biochem Behav ; 72(4): 847-55, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12062574

RESUMO

Forced immobilization is a simple and effective stressor which produces large increases in heart rate (HR), blood pressure (BP), and plasma levels of norepinephrine (NE) and epinephrine (EPI). This study investigated the effects of electroacupuncture on BP, HR, and plasma catecholamine levels in rats challenged with immobilization stress. Male Sprague-Dawley rats received electroacupuncture (3 Hz, 0.2 ms pulses, 20 mA) for 30 min after start of immobilization stress (180 min). Needlepoints corresponded to Shaohai (HT3) and Neiguan (PC6) on the heart and pericardium channel. BP and HR were monitored with an indwelling carotid catheter, and blood samples were taken from the jugular vein. Blood (for HPLC determination of NE and EPI), mean BP, and HR were sampled at rest and during the immobilization stress at 15, 30, 60, 90, 120, 150, and 180 min. Electroacupuncture at HT3 and PC6 points but not at control points (TE5, LI11, and tail) significantly reduced the expected increases in BP, HR, and attenuated plasma levels of NE and EPI in response to 3 h of immobilization stress. Results provide strong evidence that electroacupuncture effectively reduces BP and HR increases and plasma catecholamine increases in rats challenged with immobilization stress.


Assuntos
Eletroacupuntura , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Pressão Sanguínea/efeitos dos fármacos , Catecolaminas/sangue , Sedação Consciente , Epinefrina/sangue , Frequência Cardíaca/efeitos dos fármacos , Imobilização , Masculino , Norepinefrina/sangue , Ratos , Ratos Sprague-Dawley
9.
Brain Res ; 936(1-2): 82-6, 2002 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-11988233

RESUMO

Maximal electroshock seizure threshold (MEST) is a classical measure of seizure sensitivity with a wide range of experimental applications. We determined MEST in nine inbred mouse strains and one congenic strain using a procedure in which mice are given one shock per day with an incremental (1 mA) current increase in each successive trial until a maximal seizure (tonic hindlimb extension) is elicited. C57BL/6J and DBA/2J mice exhibited the highest and lowest MEST, respectively, with the values of other strains falling between these two extremes. The relative rank order of MEST values by inbred strain (highest to lowest) is as follows: C57BL/6J > CBA/J = C3H/HeJ > A/J > Balb/cJ = 129/SvIMJ = 129/SvJ > AKR/J > DBA/2J. Results of experiments involving a single electroconvulsive shock given to separate groups of mice at different current intensities suggest that determination of MEST by the method used is not affected by repeated sub-maximal seizures. Overall, results document a distinctive mouse strain distribution pattern for MEST. Additionally, low within strain variability suggests that environmental factors which affect quantification of MEST are readily controlled under the conditions of this study. We conclude that MEST represents a useful tool for dissecting the multifactorial nature of seizure sensitivity in mice.


Assuntos
Estimulação Elétrica/efeitos adversos , Epilepsia/genética , Epilepsia/fisiopatologia , Variação Genética/fisiologia , Limiar da Dor/fisiologia , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/fisiologia , Expressão Gênica/fisiologia , Genótipo , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos A , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Fenótipo
10.
Convuls Ther ; 6(3): 199-208, 1990.
Artigo em Inglês | MEDLINE | ID: mdl-11941068

RESUMO

The neurochemical mechanisms of electroconvulsive therapy (ECT) are not fully elucidated. We examined the effects of electroconvulsive shock (ECS) on brain gamma-aminobutyric acid (GABA) systems. Male Wistar-Furth rats were given ECS via auricular (ear-clip) or corneal electrodes once per day (120 V, 0.5 s) for 10 consecutive days. Two groups of sham ECS rats, one for auricular placement and one for corneal placement, served as controls. Current was measured and seizures were scored during each ECS trial. Rats receiving ECS via corneal electrodes were subjected to more electrical current compared to rats treated with auricular electrodes. Although both groups exhibited behavioral seizures of similar duration, electrode placement had a differential influence on the expression of tonic hindlimb extension and clonic hindlimb activity over the 10-day regimen. GABA levels were increased in all brain regions examined in rats treated with auricular electrodes except the hippocampus and nucleus accumbens; rats treated with corneal electrodes exhibited GABA increases in the hippocampus, frontal cortex, hypothalamus, and olfactory bulbs; a significant decrease in nucleus accumbens; and no change in the substantia nigra and striatum. The mode of ECS delivery selectively alters the pattern of regional alterations of brain GABA level induced by ECS. This effect may be a function of current intensity or localization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...