Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 841107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185932

RESUMO

Treatment of cancer with allogeneic natural killer (NK) cell therapies has seen rapid development, especially use against hematologic malignancies. Clinical trials of NK cell-based adoptive transfer to treat relapsed or refractory malignancies have used peripheral blood, umbilical cord blood and pluripotent stem cell-derived NK cells, with each approach undergoing continued clinical development. Improving the potency of these therapies relies on genetic modifications to improve tumor targeting and to enhance expansion and persistence of the NK cells. Induced pluripotent stem cell (iPSC)-derived NK cells allow for routine targeted introduction of genetic modifications and expansion of the resulting NK cells derived from a clonal starting cell population. In this review, we discuss and summarize recent important advances in the development of new iPSC-derived NK cell therapies, with a focus on improved targeting of cancer. We then discuss improvements in methods to expand iPSC-derived NK cells and how persistence of iPSC-NK cells can be enhanced. Finally, we describe how these advances may combine in future NK cell-based therapy products for the treatment of both hematologic malignancies and solid tumors.


Assuntos
Neoplasias Hematológicas/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo , Animais , Neoplasias Hematológicas/imunologia , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética
2.
Cell Stem Cell ; 28(12): 2041-2043, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861144

RESUMO

In this issue of Cell Stem Cell, Woan et al., (2021) investigate the anti-cancer activity of triple gene edited iPSC-derived natural killer (NK) cells and demonstrate that expression of a modified CD16a and interleukin (IL)-15 receptor combined with knockout of CD38 improves NK cell-mediated activity against leukemia and multiple myeloma.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mieloma Múltiplo , Linhagem Celular Tumoral , Edição de Genes , Humanos , Células Matadoras Naturais , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia
3.
Expert Opin Biol Ther ; 21(7): 849-862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32990476

RESUMO

INTRODUCTION: Treatment of acute myeloid leukemia (AML) has changed dramatically in the past ten years with the approval of targeted agents, the first of which was the anti-CD33 antibody-drug conjugate gemtuzumab ozogamicin (GO). Despite withdrawal from the market after accelerated approval, GO was reapproved and now has a well-established role in treating select AML patients. CD33 has proven to be an important target for drug development in AML as evidenced by the improvement in survival with GO treatment. AREAS COVERED: The review summarizes the development of GO, its mechanism of action, initial studies and approval, withdrawal from the market, and subsequent reapproval after the results of several large randomized studies became available. We also provide an overview of its current role in the treatment landscape of AML. EXPERT OPINION: Multiple phase 3 trials with GO have established a significant benefit with GO in induction therapy for favorable risk AML. Additional studies support the use of GO in relapsed/refractory AML and APL. Despite the withdrawal of GO from the market after initial approval, GO has proven to improve survival of select AML patients when added to induction chemotherapy and in relapsed disease.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Adulto , Aminoglicosídeos/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica , Gemtuzumab , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico
4.
Front Immunol ; 11: 561553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178188

RESUMO

Natural killer (NK) cells derived or isolated from different sources have been gaining in importance for cancer therapies. In this study, we evaluate and compare key characteristics between NK cells derived or isolated from umbilical cord blood, umbilical cord blood hematopoietic stem/progenitor cells, peripheral blood, and induced pluripotent stem cells (iPSCs). Specifically, we find CD56+ NK cells isolated and expanded directly from umbilical cord blood (UCB56) and NK cells derived from CD34+ hematopoietic stem/progenitors in umbilical cord blood (UCB34) differ in their expression of markers associated with differentiation including CD16, CD2, and killer Ig-like receptors (KIRs). UCB56-NK cells also displayed a more potent cytotoxicity compared to UCB34-NK cells. NK cells derived from iPSCs (iPSC-NK cells) were found to have variable KIR expression, with certain iPSC-NK cell populations expressing high levels of KIRs and others not expressing KIRs. Notably, KIR expression on UCB56 and iPSC-NK cells had limited effect on cytotoxic activity when stimulated by tumor target cells that express high levels of cognate HLA class I, suggesting that in vitro differentiation and expansion may override the KIR-HLA class I mediated inhibition when used across HLA barriers. Together our results give a better understanding of the cell surface receptor, transcriptional, and functional differences between NK cells present in umbilical cord blood and hematopoietic progenitor-derived NK cells which may prove important in selecting the most active NK cell populations for treatment of cancer or other therapies.


Assuntos
Diferenciação Celular/imunologia , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Células Matadoras Naturais/imunologia , Neuroblastoma/imunologia , Receptores KIR/imunologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Genótipo , Antígenos HLA/genética , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Neuroblastoma/patologia , Receptores KIR/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...