Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
mBio ; : e0103124, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916308

RESUMO

Cryptococcus neoformans causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against C. neoformans. BRI can affect the organization of the cell membrane, increasing the fungal cell permeability. We also investigated the effects of BRI against the model system Saccharomyces cerevisiae by analyzing libraries of mutants grown in the presence of BRI. In S. cerevisiae, BRI also affects the cell membrane organization, but in addition the cell wall integrity pathway and calcium metabolism. In vivo experiments show BRI significantly reduces C. neoformans survival inside macrophages and partially clears C. neoformans lung infection in an immunocompetent murine model of invasive pulmonary cryptococcosis. We also observed that BRI interacts with caspofungin (CAS) and amphotericin (AmB), potentiating their mechanism of action against C. neoformans. BRI + CAS affects endocytic movement, calcineurin, and mitogen-activated protein kinases. Our results indicate that BRI is a novel antifungal drug against cryptococcosis. IMPORTANCE: Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Cryptococcosis, one of the most prevalent fungal diseases, is generally characterized by meningitis and is mainly caused by two closely related species of basidiomycetous yeasts, Cryptococcus neoformans and Cryptococcus gattii. There are few therapeutic options for treating cryptococcosis, and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a potential antifungal agent against C. neoformans. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. BRI alone was shown to inhibit the growth of C. neoformans, acting as a fungicidal drug, but surprisingly also potentiated the activity of caspofungin (CAS) against this species. We investigated the mechanism of action of BRI and BRI + CAS against C. neoformans. We propose BRI as a new antifungal agent against cryptococcosis.

2.
Commun Biol ; 7(1): 704, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851817

RESUMO

Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.


Assuntos
Aspergilose , Aspergillus fumigatus , Sirtuínas , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimologia , Sirtuínas/genética , Sirtuínas/metabolismo , Virulência , Animais , Camundongos , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Acetilação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Mariposas/microbiologia
3.
Nat Commun ; 15(1): 4984, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862481

RESUMO

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.


Assuntos
Antifúngicos , Aspergillus fumigatus , Quinases Dyrk , Proteínas Fúngicas , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Animais , Antifúngicos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Camundongos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Azóis/farmacologia , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Pulmão/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Feminino
4.
Nat Commun ; 15(1): 3770, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704366

RESUMO

Aspergillus fumigatus is the leading causative agent of life-threatening invasive aspergillosis in immunocompromised individuals. One antifungal class used to treat Aspergillus infections is the fungistatic echinocandins, semisynthetic drugs derived from naturally occurring fungal lipopeptides. By inhibiting beta-1,3-glucan synthesis, echinocandins cause both fungistatic stunting of hyphal growth and repeated fungicidal lysis of apical tip compartments. Here, we uncover an endogenous mechanism of echinocandin tolerance in A. fumigatus whereby the inducible oxylipin signal 5,8-diHODE confers protection against tip lysis via the transcription factor ZfpA. Treatment of A. fumigatus with echinocandins induces 5,8-diHODE synthesis by the fungal oxygenase PpoA in a ZfpA dependent manner resulting in a positive feedback loop. This protective 5,8-diHODE/ZfpA signaling relay is conserved among diverse isolates of A. fumigatus and in two other Aspergillus pathogens. Our findings reveal an oxylipin-directed growth program-possibly arisen through natural encounters with native echinocandin producing fungi-that enables echinocandin tolerance in pathogenic aspergilli.


Assuntos
Antifúngicos , Aspergilose , Aspergillus fumigatus , Equinocandinas , Proteínas Fúngicas , Oxilipinas , Antifúngicos/farmacologia , Equinocandinas/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/antagonistas & inibidores , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Transdução de Sinais/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
Front Microbiol ; 15: 1373469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699477

RESUMO

Aspergilli comprise a diversity of species that have been extensively studied due to their catabolic diversity, biotechnological and ecological value, and pathogenicity. An impressive level of structural and functional conservation has been shown for aspergilli, regardless of many (yet) cryptic genomic elements. We have hypothesized the existence of conserved genes responsive to stress in aspergilli. To test the hypothesis of such conserved stress regulators in aspergilli, a straightforward computational strategy integrating well-established bioinformatic tools was used as the starting point. Specifically, five transcriptome-based datasets on exposure to organic compounds were used, covering three distinct Aspergillus species. Among the identified up-regulated genes, only one gene showed the same response in all conditions, AN9181. This gene encodes a protein containing a phenylcoumaran benzylic ether reductase-like domain and a Nitrogen metabolite repressor regulator domain (NmrA). Deletion of this gene caused significant phenotypic alterations compared to that of the parental strain across diverse conditions. Specifically, the deletion of AN9181 raised the mutant's metabolic activity in different nitrogen sources. The acquired data supports that AN9181 acts by repressing (slowing down) A. nidulans growth when exposed to aromatic compounds in a concentration dependent manner. The same phenotype was observed for amphotericin B. Finally, AN9181 underwent differential upregulation under oxidative stress conditions. Collectively, the data suggest that AN9181, herein assigned as NmrB (Nitrogen Metabolite Repression Regulator B), builds up the genetic machinery of perception of oxidative stress by negatively regulating growth under such conditions.

6.
mSphere ; 9(5): e0005724, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38687129

RESUMO

Endocytosis has been extensively studied in yeasts, where it plays crucial roles in growth, signaling regulation, and cell-surface receptor internalization. However, the biological functions of endocytosis in pathogenic filamentous fungi remain largely unexplored. In this study, we aimed to functionally characterize the roles of EdeA, an ortholog of the Saccharomyces cerevisiae endocytic protein Ede1, in Aspergillus fumigatus. EdeA was observed to be distributed as patches on the plasma membrane and concentrated in the subapical collar of hyphae, a localization characteristic of endocytic proteins. Loss of edeA caused defective hyphal polarity, reduced conidial production, and fewer sites of endocytosis initiations than that of the parental wild type. Notably, the edeA null mutant exhibited increased sensitivity to cell wall-disrupting agents, indicating a role for EdeA in maintaining cell wall integrity in A. fumigatus. This observation was further supported by the evidence showing that the thickness of the cell wall in the ΔedeA mutant increased, accompanied by abnormal activation of MpkA, a key component in the cell wall integrity pathway. Additionally, the ΔedeA mutant displayed increased pathogenicity in the Galleria mellonella wax moth infection model, possibly due to alterations in cell wall morphology. Site-directed mutagenesis identified the conserved residue E348 within the third EH (Eps15 homology) domain of EdeA as crucial for its subcellular localization and functions. In conclusion, our results highlight the involvement of EdeA in endocytosis, hyphal polarity, cell wall integrity, and pathogenicity in A. fumigatus. IMPORTANCE: Aspergillus fumigatus is a significant human pathogenic fungus known to cause invasive aspergillosis, a disease with a high mortality rate. Understanding the basic principles of A. fumigatus pathogenicity is crucial for developing effective strategies against this pathogen. Previous research has underscored the importance of endocytosis in the infection capacity of pathogenic yeasts; however, its biological function in pathogenic mold remains largely unexplored. Our characterization of EdeA in A. fumigatus sheds light on the role of endocytosis in the development, stress response, and pathogenicity of pathogenic molds. These findings suggest that the components of the endocytosis process may serve as potential targets for antifungal therapy.


Assuntos
Aspergillus fumigatus , Parede Celular , Endocitose , Proteínas Fúngicas , Hifas , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/genética , Hifas/crescimento & desenvolvimento , Virulência , Animais , Mariposas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Aspergilose/microbiologia
7.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617338

RESUMO

Aspergillus fumigatus is the primary etiological agent of aspergillosis. Here, we show that the host defense peptide mimetic, brilacidin (BRI) can potentiate ibrexafungerp (IBX) against clinical isolates of A. fumigatus. CAS-resistant strains with mutations in fks1 that encodes the 1,3-ß-D-glucan synthase are not IBX-resistant and BRI+IBX can inhibit their growth. The combination of BRI+IBX plays a fungicidal role, increases the fungal cell permeability and decreases the fungal survival in the presence of A549 epithelial cells.

8.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496489

RESUMO

Fungal pathogens exhibit extensive strain heterogeneity, including variation in virulence. Whether closely related non-pathogenic species also exhibit strain heterogeneity remains unknown. Here, we comprehensively characterized the pathogenic potentials (i.e., the ability to cause morbidity and mortality) of 16 diverse strains of Aspergillus fischeri, a non-pathogenic close relative of the major pathogen Aspergillus fumigatus. In vitro immune response assays and in vivo virulence assays using a mouse model of pulmonary aspergillosis showed that A. fischeri strains varied widely in their pathogenic potential. Furthermore, pangenome analyses suggest that A. fischeri genomic and phenotypic diversity is even greater. Genomic, transcriptomic, and metabolomic profiling identified several pathways and secondary metabolites associated with variation in virulence. Notably, strain virulence was associated with the simultaneous presence of the secondary metabolites hexadehydroastechrome and gliotoxin. We submit that examining the pathogenic potentials of non-pathogenic close relatives is key for understanding the origins of fungal pathogenicity.

9.
Microbiol Spectr ; 12(4): e0398023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38445873

RESUMO

Modern taxonomic classification is often based on phylogenetic analyses of a few molecular markers, although single-gene studies are still common. Here, we leverage genome-scale molecular phylogenetics (phylogenomics) of species and populations to reconstruct evolutionary relationships in a dense data set of 710 fungal genomes from the biomedically and technologically important genus Aspergillus. To do so, we generated a novel set of 1,362 high-quality molecular markers specific for Aspergillus and provided profile Hidden Markov Models for each, facilitating their use by others. Examining the resulting phylogeny helped resolve ongoing taxonomic controversies, identified new ones, and revealed extensive strain misidentification (7.59% of strains were previously misidentified), underscoring the importance of population-level sampling in species classification. These findings were corroborated using the current standard, taxonomically informative loci. These findings suggest that phylogenomics of species and populations can facilitate accurate taxonomic classifications and reconstructions of the Tree of Life.IMPORTANCEIdentification of fungal species relies on the use of molecular markers. Advances in genomic technologies have made it possible to sequence the genome of any fungal strain, making it possible to use genomic data for the accurate assignment of strains to fungal species (and for the discovery of new ones). We examined the usefulness and current limitations of genomic data using a large data set of 710 publicly available genomes from multiple strains and species of the biomedically, agriculturally, and industrially important genus Aspergillus. Our evolutionary genomic analyses revealed that nearly 8% of publicly available Aspergillus genomes are misidentified. Our work highlights the usefulness of genomic data for fungal systematic biology and suggests that systematic genome sequencing of multiple strains, including reference strains (e.g., type strains), of fungal species will be required to reduce misidentification errors in public databases.


Assuntos
Aspergillus , Fungos , Filogenia , Fungos/genética , Aspergillus/genética , Evolução Biológica , Genômica , Genoma Fúngico
10.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38507596

RESUMO

Fungi biosynthesize diverse secondary metabolites, small organic bioactive molecules with key roles in fungal ecology. Fungal secondary metabolites are often encoded by physically clustered genes known as biosynthetic gene clusters (BGCs). Fungi in the genus Penicillium produce a cadre of secondary metabolites, some of which are useful (e.g. the antibiotic penicillin and the cholesterol-lowering drug mevastatin) and others harmful (e.g. the mycotoxin patulin and the immunosuppressant gliotoxin) to human affairs. Fungal genomes often also encode resistance genes that confer protection against toxic secondary metabolites. Some Penicillium species, such as Penicillium decumbens, are known to produce gliotoxin, a secondary metabolite with known immunosuppressant activity. To investigate the evolutionary conservation of homologs of the gliotoxin BGC and of genes involved in gliotoxin resistance in Penicillium, we analyzed 35 Penicillium genomes from 23 species. Homologous, lesser fragmented gliotoxin BGCs were found in 12 genomes, mostly fragmented remnants of the gliotoxin BGC were found in 21 genomes, whereas the remaining 2 Penicillium genomes lacked the gliotoxin BGC altogether. In contrast, broad conservation of homologs of resistance genes that reside outside the BGC across Penicillium genomes was observed. Evolutionary rate analysis revealed that BGCs with higher numbers of genes evolve slower than BGCs with few genes, suggestive of constraint and potential functional significance or more recent decay. Gene tree-species tree reconciliation analyses suggested that the history of homologs in the gliotoxin BGC across the genus Penicillium likely involved multiple duplications, losses, and horizontal gene transfers. Our analyses suggest that genes encoded in BGCs can have complex evolutionary histories and be retained in genomes long after the loss of secondary metabolite biosynthesis.


Assuntos
Evolução Molecular , Gliotoxina , Família Multigênica , Penicillium , Filogenia , Penicillium/genética , Gliotoxina/biossíntese , Vias Biossintéticas/genética , Genoma Fúngico
11.
Appl Environ Microbiol ; 90(4): e0188523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38451077

RESUMO

Histone acetyltransferase (HAT)-mediated epigenetic modification is essential for diverse cellular processes in eukaryotes. However, the functions of HATs in the human pathogen Aspergillus fumigatus remain poorly understood. In this study, we characterized the functions of MOZ, Ybf2/Sas3, Sas2, and Tip60 (MYST)-family histone acetyltransferase something about silencing (Sas3) in A. fumigatus. Phenotypic analysis revealed that loss of Sas3 results in significant impairments in colony growth, conidiation, and virulence in the Galleria mellonella model. Subcellular localization and Western blot analysis demonstrated that Sas3 localizes to nuclei and is capable of acetylating lysine 9 and 14 of histone H3 in vivo. Importantly, we found that Sas3 is critical for the cell wall integrity (CWI) pathway in A. fumigatus as evidenced by hypersensitivity to cell wall-perturbing agents, altered cell wall thickness, and abnormal phosphorylation levels of CWI protein kinase MpkA. Furthermore, site-directed mutagenesis studies revealed that the conserved glycine residues G641 and G643 and glutamate residue E664 are crucial for the acetylation activity of Sas3. Unexpectedly, only triple mutations of Sas3 (G641A/G643A/E664A) displayed defective phenotypes similar to the Δsas3 mutant, while double or single mutations did not. This result implies that the role of Sas3 may extend beyond histone acetylation. Collectively, our findings demonstrate that MYST-family HAT Sas3 plays an important role in the fungal development, virulence, and cell wall integrity in A. fumigatus. IMPORTANCE: Epigenetic modification governed by HATs is indispensable for various cellular processes in eukaryotes. Nonetheless, the precise functions of HATs in the human pathogen Aspergillus fumigatus remain elusive. In this study, we unveil the roles of MYST-family HAT Sas3 in colony growth, conidiation, virulence, and cell wall stress response in A. fumigatus. Particularly, our findings demonstrate that Sas3 can function through mechanisms unrelated to histone acetylation, as evidenced by site-directed mutagenesis experiments. Overall, this study broadens our understanding of the regulatory mechanism of HATs in fungal pathogens.


Assuntos
Aspergillus fumigatus , Histona Acetiltransferases , Humanos , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Virulência , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
12.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405873

RESUMO

Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In Brazil, S. brasiliensis represents a vital health threat to humans and domestic animals due to its zoonotic transmission. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii, and by its antifungal activity when used to treat infected epithelial cells and macrophages. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis.

13.
mBio ; 15(4): e0026324, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38407058

RESUMO

Azoles are the primary antifungal drugs used to treat infections caused by Aspergillus fumigatus. However, the emergence of azole resistance in A. fumigatus has become a global health concern despite the low proportion of resistant isolates in natural populations. In bacteria, antibiotic resistance incurs a fitness cost that renders strains less competitive in the absence of antibiotics. Consequently, fitness cost is a key determinant of the spread of resistant mutations. However, the cost of azole resistance and its underlying causes in A. fumigatus remain poorly understood. In this observation, we revealed that the 10 out of 15 screened azole-resistant isolates, which possessed the most common azole-targeted cyp51A mutations, particularly the presence of tandem repeats in the promoter region, exhibit fitness cost when competing with the susceptible isolates in azole-free environments. These results suggest that fitness cost may significantly influence the dynamics of azole resistance, which ultimately contributes to the low prevalence of azole-resistant A. fumigatus isolates in the environment and clinic. By constructing in situ cyp51A mutations in a parental azole-susceptible strain and reintroducing the wild-type cyp51A gene into the azole-resistant strains, we demonstrated that fitness cost is not directly dependent on cyp51A mutations but is instead associated with the evolution of variable mutations related to conidial germination or other unknown development-related processes. Importantly, our observations unexpectedly revealed that some azole-resistant isolates showed no detectable fitness cost, and some even exhibited significantly increased competitive fitness in azole-free environments, highlighting the potential risk associated with the prevalence of these isolates. IMPORTANCE: Azole resistance in the human fungal pathogen Aspergillus fumigatus presents a global public health challenge. Understanding the epidemic trends and evolutionary patterns of azole resistance is critical to prevent and control the spread of azole-resistant isolates. The primary cause is the mutation of the drug target 14α-sterol-demethylase Cyp51A, yet its impact on competitive ability remains uncertain. Our competition assays revealed a diverse range of fitness outcomes for environmental and clinical cyp51A-mutated isolates. We have shown that this fitness cost is not reliant on cyp51A mutations but might be linked to unknown mutations induced by stress conditions. Among these isolates, the majority displayed fitness costs, while a few displayed enhanced competitive ability, which may have a potential risk of spread and the need to closely monitor these isolates. Our observation reveals the variation in fitness costs among azole-resistant isolates of A. fumigatus, highlighting the significant role of fitness cost in the spread of resistant strains.


Assuntos
Aspergillus fumigatus , Azóis , Humanos , Azóis/farmacologia , Proteínas Fúngicas/genética , Antifúngicos/farmacologia , Mutação , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
14.
Nat Commun ; 15(1): 33, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167253

RESUMO

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. The Mitogen-Activated Protein kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. The sensor histidine kinase SlnASln1 is important for modulation of MpkA phosphorylation. Our work emphasizes the importance of MpkA and compartmentalization of cellular events for GT production and self-defense.


Assuntos
Aspergilose , Gliotoxina , Humanos , Aspergillus fumigatus/metabolismo , Gliotoxina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Aspergilose/microbiologia
15.
Front Cell Infect Microbiol ; 13: 1268959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868350

RESUMO

Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1ß, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Animais , Camundongos , Paracoccidioides/genética , Proteômica , Camundongos Endogâmicos C57BL , Ferro/metabolismo , Imunidade , Granuloma
17.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37808717

RESUMO

Protein acetylation is a crucial post-translational modification that controls gene expression and a variety of biological processes. Sirtuins, a prominent class of NAD + -dependent lysine deacetylases, serve as key regulators of protein acetylation and gene expression in eukaryotes. In this study, six single knockout strains of fungal pathogen Aspergillus fumigatus were constructed, in addition to a strain lacking all predicted sirtuins (SIRTKO). Phenotypic assays suggest that sirtuins are involved in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. AfsirE deletion resulted in attenuation of virulence, as demonstrated in murine and Galleria infection models. The absence of AfSirE leads to altered acetylation status of proteins, including histones and non-histones, resulting in significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.

18.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662192

RESUMO

Aspergillus fumigatus , an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores or conidia for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of A. fumigatus , two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis , and the cryptic pathogen Aspergillus lentulus . After identifying 62 proteins uniquely expressed on the A. fumigatus conidial surface, we deleted 42 genes encoding conidial proteins. We found deletion of 33 of these genes altered susceptibility to macrophage killing, penetration and damage to epithelial cells, and cytokine production. Notably, a gene that encodes glycosylasparaginase, which modulates levels of the host pro-inflammatory cytokine IL-1ß, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins and effectors are important for evasion and modulation of the immune response at the onset of fungal infection.

19.
Proc Natl Acad Sci U S A ; 120(36): e2308752120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639588

RESUMO

The causative agent of human Q fever, Coxiella burnetii, is highly adapted to infect alveolar macrophages by inhibiting a range of host responses to infection. Despite the clinical and biological importance of this pathogen, the challenges related to genetic manipulation of both C. burnetii and macrophages have limited our knowledge of the mechanisms by which C. burnetii subverts macrophages functions. Here, we used the related bacterium Legionella pneumophila to perform a comprehensive screen of C. burnetii effectors that interfere with innate immune responses and host death using the greater wax moth Galleria mellonella and mouse bone marrow-derived macrophages. We identified MceF (Mitochondrial Coxiella effector protein F), a C. burnetii effector protein that localizes to mitochondria and contributes to host cell survival. MceF was shown to enhance mitochondrial function, delay membrane damage, and decrease mitochondrial ROS production induced by rotenone. Mechanistically, MceF recruits the host antioxidant protein Glutathione Peroxidase 4 (GPX4) to the mitochondria. The protective functions of MceF were absent in primary macrophages lacking GPX4, while overexpression of MceF in human cells protected against oxidative stress-induced cell death. C. burnetii lacking MceF was replication competent in mammalian cells but induced higher mortality in G. mellonella, indicating that MceF modulates the host response to infection. This study reveals an important C. burnetii strategy to subvert macrophage cell death and host immunity and demonstrates that modulation of the host antioxidant system is a viable strategy to promote the success of intracellular bacteria.


Assuntos
Antioxidantes , Coxiella , Humanos , Animais , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Estresse Oxidativo , Morte Celular , Mamíferos
20.
Res Sq ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398048

RESUMO

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. Peroxisomes are also required for proper GT production and self-defense. The Mitogen-Activated Protein (MAP) kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. Our work emphasizes the importance of dynamic compartmentalization of cellular events for GT production and self-defense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...