Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(26): 265102, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449730

RESUMO

Magnetic reconnection is of fundamental importance to plasmas because of its role in releasing and repartitioning stored magnetic energy. Previous results suggest that this energy is predominantly released as ion enthalpy flux along the reconnection outflow. Using Magnetospheric Multiscale data we find the existence of very significant electron energy flux densities in the vicinity of the magnetopause electron dissipation region, orthogonal to the ion energy outflow. These may significantly impact models of electron transport, wave generation, and particle acceleration.

2.
Geophys Res Lett ; 45(10): 4569-4577, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31031447

RESUMO

Magnetospheric Multiscale observations are used to probe the structure and temperature profile of a guide field reconnection exhaust ~100 ion inertial lengths downstream from the X-line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near 1 edge of the exhaust and containing electron flow toward the X-line. Electron holes were also detected both on the cavity edge and at the Hall magnetic field reversal. Predominantly parallel ion and electron heating was observed in the main exhaust, but within the cavity, electron cooling and enhanced parallel ion heating were found. This is explained in terms of the parallel electric field, which inhibits electron mixing within the cavity on newly reconnected field lines but accelerates ions. Consequently, guide field reconnection causes inhomogeneous changes in ion and electron temperature across the exhaust.

3.
Phys Rev Lett ; 116(23): 235102, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341241

RESUMO

We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E_{∥}) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E_{∥} events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E_{∥} events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E_{∥} events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

4.
Phys Rev Lett ; 112(14): 145002, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765977

RESUMO

Kinetic simulations of magnetotail reconnection have revealed electromagnetic whistlers originating near the exhaust boundary and propagating into the inflow region. The whistler production mechanism is not a linear instability, but rather is Cerenkov emission of almost parallel whistlers from localized moving clumps of charge (finite-size quasiparticles) associated with nonlinear coherent electron phase space holes. Whistlers are strongly excited by holes without ever growing exponentially. In the simulation the whistlers are emitted in the source region from holes that accelerate down the magnetic separatrix towards the x line. The phase velocity of the whistlers vφ in the source region is everywhere well matched to the hole velocity vH as required by the Cerenkov condition. The simulation shows emission is most efficient near the theoretical maximum vφ=half the electron Alfven speed, consistent with the new theoretical prediction that faster holes radiate more efficiently. While transferring energy to whistlers the holes lose coherence and dissipate over a few local ion inertial lengths. The whistlers, however, propagate to the x line and out over many 10's of ion inertial lengths into the inflow region of reconnection. As the whistlers pass near the x line they modulate the rate at which magnetic field lines reconnect.

5.
Phys Rev Lett ; 107(13): 135001, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026861

RESUMO

Previous 2D simulations of reconnection using a standard model of initially antiparallel magnetic fields have detected electron jets outflowing from the x point into the ion outflow exhausts. Associated with these jets are extended "outer electron diffusion regions." New PIC simulations with an ion to electron mass ratio as large as 1836 (an H(+) plasma) now show that the jets are strongly deflected and the outer electron diffusion region is broken up by a very weak out-of-plane magnetic guide field, even though the diffusion rate itself is unchanged. Jet outflow and deflection are interpreted in terms of electron dynamics and are compared to recent measurements of jets in the presence of a small guide field in Earth's magnetosheath.

6.
Phys Rev Lett ; 102(22): 225004, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19658872

RESUMO

Observations of electron phase-space holes (EHs) in Earth's plasma sheet by the THEMIS satellites include the first detection of a magnetic perturbation (deltaB_{ parallel}) parallel to the ambient magnetic field (B0). EHs with a detectable deltaB_{ parallel} have several distinguishing features including large electric field amplitudes, a magnetic perturbation perpendicular to B0, high speeds ( approximately 0.3c) along B0, and sizes along B0 of tens of Debye lengths. These EHs have a significant center potential (Phi approximately k_{B}T_{e}/e), suggesting strongly nonlinear behavior nearby such as double layers or magnetic reconnection.

7.
Phys Rev Lett ; 102(15): 155002, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518640

RESUMO

We report the first direct observations of parallel electric fields (E_{ parallel}) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E_{ parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet.

8.
Phys Rev Lett ; 101(5): 051101, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18764383

RESUMO

We show that observed spatial- and frequency-domain signatures of intense solar-wind Langmuir waves can be described as eigenmodes trapped in a parabolic density well. Measured solar-wind electric field spectra and waveforms are compared with 1D linear solutions and, in many cases, can be represented by 1-3 low-order eigenstates. To our knowledge, this report is the first observational confirmation of Langmuir eigenmodes in space. These results suggest that linear eigenmodes may be the starting point of the nonlinear evolution, critical for producing solar type II and type III radio bursts.

9.
Phys Rev Lett ; 87(25): 255001, 2001 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-11736583

RESUMO

Kinetic 1D simulations reveal that a weak density depression in a current-carrying plasma can lead to the formation of a strong potential ramp (double layer). The ramp and plasma turbulence it creates share many features with recent particle and field measurements in the auroral ionosphere. An electron beam accelerated by the ramp produces a series of propagating electron phase-space holes via a spatial two-stream instability. Electron heating associated with the formation and merging of these holes is found to influence the subsequent evolution of the potential ramp.

10.
Phys Rev Lett ; 87(4): 045003, 2001 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-11461625

RESUMO

We report direct measurements of parallel electric fields related to particle acceleration in a collisionless space plasma. The electric field is that of a monotonic potential ramp localized to approximately 10 debye lengths along the magnetic field. Electrons accelerated by the parallel electric field are accompanied by intense electrostatic waves and nonlinear structures interpreted as electron phase-space holes.

11.
Phys Rev Lett ; 86(7): 1239-42, 2001 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-11178053

RESUMO

Two-dimensional simulations of beam-driven turbulence in the auroral ionosphere have shown the formation and instability of phase-space tubes. These tubes are a generalization of electron phase-space holes in a one-dimensional plasma. In a strongly magnetized plasma, such tubes vibrate at frequencies below the bounce frequency of the trapping potential. A theory for these vibrations yields quantitative agreement with kinetic simulations. Furthermore, the theory predicts that the vibrations can become unstable when resonantly coupled to electrostatic whistlers-also in agreement with simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...