Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Microbiol Immunol (Bp) ; 6(3): 162-177, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27766165

RESUMO

Campylobacter jejuni's flagellar locomotion is controlled by eleven chemoreceptors. Assessment of the distribution of the relevant chemoreceptor genes in the C. jejuni genomes deposited in the National Center for Biotechnology Information (NCBI) database led to the identification of two previously unknown tlp genes and a tlp5 pseudogene. These two chemoreceptor genes share the same locus in the C. jejuni genome with tlp4 and tlp11, but the gene region encoding the periplasmic ligand binding domain differs significantly from other chemoreceptor genes. Hence, they were named tlp12 and tlp13. Consequently, it was of interest to study their distribution in C. jejuni subpopulations of different clonality, and their cooccurrence with the eleven previously reported chemoreceptor genes. Therefore, the presence of all tlp genes was detected by polymerase chain reaction (PCR) in 292 multilocus sequence typing (MLST)-typed C. jejuni isolates from different hosts. The findings show interesting trends: Tlp4, tlp11, tlp12, and tlp13 appeared to be mutually exclusive and cooccur in a minor subset of isolates. Tlp4 was found to be present in only 33.56% of all tested isolates and was significantly less often detected in turkey isolates. Tlp11 was tested positive in only 17.8% of the isolates, while tlp12 was detected in 29.5% of all isolates, and tlp13 was found to be present in 38.7%.

2.
BMC Genomics ; 16: 1088, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689587

RESUMO

BACKGROUND: Campylobacter species are the most prevalent bacterial pathogen causing acute enteritis worldwide. In contrast to Campylobacter jejuni, about 5 % of Campylobacter coli strains exhibit susceptibility to restriction endonuclease digestion by DpnI cutting specifically 5'-G(m)ATC-3' motifs. This indicates significant differences in DNA methylation between both microbial species. The goal of the study was to analyze the methylome of a C. coli strain susceptible to DpnI digestion, to identify its methylation motifs and restriction modification systems (RM-systems), and compare them to related organisms like C. jejuni and Helicobacter pylori. RESULTS: Using one SMRT cell and the PacBio RS sequencing technology followed by PacBio Modification and Motif Analysis the complete genome of the DpnI susceptible strain C. coli BfR-CA-9557 was sequenced to 500-fold coverage and assembled into a single contig of 1.7 Mbp. The genome contains a CJIE1-like element prophage and is phylogenetically closer to C. coli clade 1 isolates than clade 3. 45,881 6-methylated adenines (ca. 2.7 % of genome positions) that are predominantly arranged in eight different methylation motifs and 1,788 4-methylated cytosines (ca. 0.1 %) have been detected. Only two of these motifs correspond to known restriction modification motifs. Characteristic for this methylome was the very high fraction of methylation of motifs with mostly above 99 %. CONCLUSIONS: Only five dominant methylation motifs have been identified in C. jejuni, which have been associated with known RM-systems. C. coli BFR-CA-9557 shares one (RAATTY) of these, but four ORFs could be assigned to putative Type I RM-systems, seven ORFs to Type II RM-systems and three ORFs to Type IV RM-systems. In accordance with DpnI prescreening RM-system IIP, methylation of GATC motifs was detected in C. coli BfR-CA-9557. A homologous IIP RM-system has been described for H. pylori. The remaining methylation motifs are specific for C. coli BfR-CA-9557 and have been neither detected in C. jejuni nor in H. pylori. The results of this study give us new insights into epigenetics of Campylobacteraceae and provide the groundwork to resolve the function of RM-systems in C. coli.


Assuntos
Campylobacter coli/genética , Genoma Bacteriano , Análise de Sequência de DNA/métodos , Campylobacter coli/classificação , Metilação de DNA , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Epigênese Genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...