Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 17(4): 574-584, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30725510

RESUMO

Essentials Consensus sequence and biochemical data suggest a Na+ -site in the factor (F) IXa protease domain. X-ray structure of the FIXa EGF2/protease domain at 1.37 Å reveals a Na+ -site not observed earlier. Molecular dynamics simulations data support that Na+  ± Ca2+ promote FIXa protease domain stability. Sulfate ions found in the protease domain mimic heparin sulfate binding mode in FIXa. SUMMARY: Background Activated coagulation factor IX (FIXa) consists of a γ-carboxyglutamic acid domain, two epidermal growth factor-like (EGF) domains, and a C-terminal protease domain. Consensus sequence and biochemical data support the existence of a Na+ -site in the FIXa protease domain. However, soaking experiments or crystals grown in high concentration of ammonium sulfate did not reveal a Na+ -site in wild-type or mutant FIXa EGF2/protease domain structure. Objective Determine the structure of the FIXa EGF2/protease domain in the presence of Na+ ; perform molecular dynamics (MD) simulations to explore the role of Na+ in stabilizing FIXa structure. Methods Crystallography, MD simulations, and modeling heparin binding to FIXa. Results Crystal structure at 1.37-Å resolution revealed that Na+ is coordinated to carbonyl groups of residues 184A, 185, 221A, and 224 in the FIXa protease domain. The Na+ -site in FIXa is similar to that of FXa and is linked to the Asp189 S1-site. In MD simulations, Na+ reduced fluctuations in residues 217-225 (Na+ -loop) and 70-80 (Ca2+ -loop), whereas Ca2+ reduced fluctuations only in residues of the Ca2+ -loop. Ca2+ and Na+ together reduced fluctuations in residues of the Ca2+ -loop and Na+ -loop (residues 70-80, 183-194, and 217-225). Moreover, we observed four sulfate ions that make salt bridges with FIXa protease domain Arg/Lys residues, which have been implicated in heparin binding. Based upon locations of the sulfate ions, we modeled heparin binding to FIXa, which is similar to the heparin binding in thrombin. Conclusions The FIXa Na+ -site in association with Ca2+ contributes to stabilization of the FIXa protease domain. The heparin binding mode in FIXa is similar to that in thrombin.


Assuntos
Coagulação Sanguínea , Cristalografia por Raios X , Fator IXa/metabolismo , Simulação de Dinâmica Molecular , Sódio/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Estabilidade Enzimática , Fator IXa/química , Fator IXa/genética , Heparina/metabolismo , Humanos , Mutação , Ligação Proteica , Domínios Proteicos , Sódio/química
2.
Biochem Pharmacol ; 131: 16-28, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28223017

RESUMO

Apoptosis is a highly regulated pathway of programmed cell death relying on the fine balance between pro and antiapoptotic binding partners. Overexpression of the antiapoptotic protein BCL2 in several cancers makes it an ideal target for chemotherapy, with minimum side effects. In one of our previous studies, we designed, synthesized and characterized Disarib, a BCL2-specific small molecule inhibitor. Interestingly, Disarib showed a novel mode of BCL2 inhibition, by predominantly binding to its BH1 domain, as compared to the BH3-specific action of other known BCL2 inhibitors. Here, we investigate the mechanism by which Disarib induces cell death, upon binding to BCL2. We find that Disarib specifically disrupted the BCL2-BAK interaction, but not that of BCL2-BAX or other members of the proapoptotic family such as PUMA and BIM, in vitro. Biochemical and biophysical studies demonstrate Disarib-induced inhibition of BCL2-BAK interaction with a Ki of 12.76nM. Genetic knockout cells of BAK/BAX and double knockout (DKO) cells confirmed a BAK-specific action of Disarib, thereby facilitating apoptosis. Importantly, intracellular FRET in BAK/BAX single and double knockout cells demonstrated BCL2-BAK disruption, and activation of intrinsic pathway of apoptosis upon Disarib treatment. Thus, we report a unique mechanism of action of a BCL2 inhibitor, Disarib, by specifically targeting the interaction of BCL2-BAK, while sparing that of other proapoptotic binding partners.


Assuntos
Apoptose/efeitos dos fármacos , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Tiadiazóis/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Linhagem Celular Tumoral , Dicroísmo Circular , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espectrometria de Fluorescência
3.
Mol Carcinog ; 56(2): 550-566, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27312791

RESUMO

The terminal step of ligation of single and/or double-strand breaks during physiological processes such as DNA replication, repair and recombination requires participation of DNA ligases in all mammals. DNA Ligase I has been well characterised to play vital roles during these processes. Considering the indispensable role of DNA Ligase I, a therapeutic strategy to impede proliferation of cancer cells is by using specific small molecule inhibitors against it. In the present study, we have designed and chemically synthesised putative DNA Ligase I inhibitors. Based on various biochemical and biophysical screening approaches, we identify two prospective DNA Ligase I inhibitors, SCR17 and SCR21. Both the inhibitors blocked ligation of nicks on DNA in a concentration-dependent manner, when catalysed by cell-free extracts or purified Ligase I. Docking studies in conjunction with biolayer interferometry and gel shift assays revealed that both SCR17 and SCR21 can bind to Ligase I, particularly to the DNA Binding Domain of Ligase I with KD values in nanomolar range. The inhibitors did not show significant affinity towards DNA Ligase III and DNA Ligase IV. Further, addition of Ligase I could restore the joining, when the inhibitors were treated with testicular cell-free extracts. Ex vivo studies using multiple assays showed that even though cell death was limited in the presence of inhibitors in cancer cells, their proliferation was compromised. Hence, we identify two promising DNA Ligase I inhibitors, which can be used in biochemical and cellular assays, and could be further modified and optimised to target cancer cells. © 2016 Wiley Periodicals, Inc.


Assuntos
DNA Ligase Dependente de ATP/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Ligase Dependente de ATP/química , DNA Ligase Dependente de ATP/metabolismo , Replicação do DNA/efeitos dos fármacos , Desenho de Fármacos , Células HEK293 , Humanos , Masculino , Simulação de Acoplamento Molecular , Ratos , Ratos Wistar
4.
FEBS J ; 283(18): 3408-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27444341

RESUMO

The antiapoptotic protein BCL2 is overexpressed in several cancers and contributes to prolonged cell survival and chemoresistance, lending itself as an excellent target for cancer therapy. Here, we report the design, synthesis, and characterization of Disarib, a novel BCL2 inhibitor. Disarib showed selective cytotoxicity in BCL2 high cancer cell lines, and CLL patient primary cells, as compared to BCL2 low cell lines. BCL2 knockdown in cells rendered remarkable resistance to Disarib, while sensitivity was regained upon its ectopic expression, establishing target specificity. In silico, biochemical and biophysical studies demonstrated strong affinity of Disarib to BCL2, but not to other antiapoptotic BCL2 family members viz., BCL-xL, BCL2A1 etc. Interestingly, biophysical studies showed that BH1 domain deletion mutant demonstrated ~ 67-fold reduction in BCL2-Disarib interaction, while it was only ~ 20-fold in the case of BH3 deletion mutant, suggesting predominant involvement of the BH1 domain for Disarib binding. Thus, we report identification of a novel BCL2 inhibitor with a unique mechanism of BCL2 inhibition, as opposed to the well-studied BH3 domain targeting.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Tiadiazóis/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Fenômenos Biofísicos , Linhagem Celular Tumoral , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Indóis/química , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tiadiazóis/química , Células Tumorais Cultivadas
6.
PLoS One ; 11(3): e0152102, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27010368

RESUMO

Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.


Assuntos
DNA/química , Sequência de Bases , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Estereoisomerismo , Termodinâmica
7.
RNA ; 19(8): 1038-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23861536

RESUMO

Non-Watson-Crick pairs like the G·U wobble are frequent in RNA duplexes. Their geometric dissimilarity (nonisostericity) with the Watson-Crick base pairs and among themselves imparts structural variations decisive for biological functions. Through a novel circular representation of base pairs, a simple and general metric scheme for quantification of base-pair nonisostericity, in terms of residual twist and radial difference that can also envisage its mechanistic effect, is proposed. The scheme is exemplified by G·U and U·G wobble pairs, and their predicable local effects on helical twist angle are validated by MD simulations. New insights into a possible rationale for contextual occurrence of G·U and other non-WC pairs, as well as the influence of a G·U pair on other non-Watson-Crick pair neighborhood and RNA-protein interactions are obtained from analysis of crystal structure data. A few instances of RNA-protein interactions along the major groove are documented in addition to the well-recognized interaction of the G·U pair along the minor groove. The nonisostericity-mediated influence of wobble pairs for facilitating helical packing through long-range interactions in ribosomal RNAs is also reviewed.


Assuntos
Pareamento de Bases , Conformação de Ácido Nucleico , RNA/química , Sítios de Ligação , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas de Ligação a RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...