Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Neuron ; 66(5): 624-7, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20547121

RESUMO

Tight control of synapse formation ensures that neurons connect to appropriate targets. In this issue of Neuron, Klassen et al. identify ARL-8 GTPase as a regulator of presynaptic assembly. Without ARL-8, presynaptic material aggregates en route to its destination, suggesting that ARL-8 acts like a dispersant to prevent premature synaptic assembly in the axon.

5.
Curr Opin Neurobiol ; 18(5): 495-503, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18950710

RESUMO

The mechanisms for delivering components to nerve terminals are diverse and highly regulated. The diversity of kinesin motors alone is insufficient to account for the specificity of delivery. Additional specificity and control are contributed by adaptor proteins and associated regulatory molecules. The interaction of cargos with these complexes can confer distinct behaviors on the transport of synaptic organelles. The rich regulatory mechanisms of transport that are only now emerging as the cargo-motor complexes are defined and subsequent local events that regulate their dynamic relationship are examined. Here we review recent studies of kinesin-related axonal transport of three crucial synaptic components, Piccolo-bassoon Transport Vesicles (PTVs), Synaptic Vesicle Precursors (SVPs), and mitochondria, and the mechanisms that modulate their transport.


Assuntos
Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/fisiologia , Vesículas Transportadoras/fisiologia , Animais , Transporte Axonal/fisiologia , Humanos , Cinesinas/metabolismo , Cinesinas/fisiologia , Mitocôndrias/metabolismo , Modelos Biológicos , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Transportadoras/metabolismo
6.
Proc Natl Acad Sci U S A ; 102(10): 3834-9, 2005 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-15738386

RESUMO

Drosophila RacGAP50C and its homologues act as part of a complex with a kinesin-like protein (Pavarotti/Zen-4) that is essential for the formation of the central spindle and completion of cytokinesis [Mishima, M., Kaitna, S. & Glotzer, M. (2002) Dev. Cell 2, 41-54; Somers, W. G. & Saint, R. (2003) Dev. Cell 4, 29-39; Jantsch-Plunger et al. (2000) J. Cell Biol. 149, 1391-1404]. We report here that RacGAP50C corresponds to the tumbleweed (tum) gene previously identified based on its defects in dendrite development of sensory neurons [Gao, F. B., Brenman, J. E., Jan, L. Y. & Jan, Y. N. (1999) Genes Dev. 13, 2549-2561]. Using mushroom body neurogenesis and morphogenesis as a model, we show that Tumbleweed (Tum), Pavarotti, and their association are required for neuroblast proliferation. Tum with a mutation predicted to disrupt the GTPase-activating protein (GAP) activity still largely retains its activity in regulating cell division but is impaired in its activity to limit axon growth. We also provide evidence that Tum and Pavarotti regulate the subcellular localization of each other in postmitotic neurons and that cytoplasmic accumulation of both proteins disrupts axon development in a GAP-dependent manner. Taken together with previous studies of RacGAP50C in regulating cytokinesis, we propose that Tum serves as a scaffolding protein in regulating cell division but acts as a GAP to limit axon growth in postmitotic neurons.


Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Morfogênese , Neurônios/fisiologia , Animais , Axônios/fisiologia , Proliferação de Células , Dendritos/fisiologia , Drosophila , Proteínas de Drosophila/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Interferência de RNA
7.
Endocrinology ; 143(10): 3727-39, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12239082

RESUMO

The differential exposure of males and females to testosterone (T) and its metabolite estradiol (E) contributes to the development of sex differences in the brain. However, the mechanisms by which T and E permanently alter neural development remain virtually unknown. Two regions of the rat preoptic area, the anteroventral periventricular nucleus (AVPv) and the medial preoptic nucleus (MPN), are sexually dimorphic and serve as models for studying the hormonal mechanisms of sexual differentiation. Around birth, these regions express dramatically higher levels of progesterone receptor immunoreactivity (PRir) in males than they do in females. The present study examined the possibility that sexually dimorphic induction of PR expression in these two regions constitutes a potential mechanism of E-mediated sexual differentiation. Prenatal exposure to either T propionate or the synthetic estrogen, diethylstilbestrol, but not dihydrotestosterone propionate, significantly increased PRir levels in the MPN and AVPv of fetal females compared with controls. Prenatal exposure to the aromatase inhibitor, 1,4,6-androstatriene-3,17-dione, significantly reduced PRir in the MPN and AVPv of fetal males, whereas the androgen receptor antagonist flutamide had no effect. This suggests that aromatization of T into E is crucial for the sex difference in PR expression in the MPN and AVPv during development.


Assuntos
Estradiol/fisiologia , Receptores de Progesterona/metabolismo , Caracteres Sexuais , Diferenciação Sexual/fisiologia , Antagonistas de Androgênios/farmacologia , Androstatrienos/farmacologia , Animais , Animais Recém-Nascidos/metabolismo , Inibidores da Aromatase , Dietilestilbestrol/farmacologia , Inibidores Enzimáticos/farmacologia , Estrogênios não Esteroides/farmacologia , Feminino , Hormônios Esteroides Gonadais/farmacologia , Trabalho de Parto , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Testosterona/farmacologia
8.
Nature ; 416(6879): 442-7, 2002 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-11919635

RESUMO

Growth, guidance and branching of axons are all essential processes for the precise wiring of the nervous system. Rho family GTPases transduce extracellular signals to regulate the actin cytoskeleton. In particular, Rac has been implicated in axon growth and guidance. Here we analyse the loss-of-function phenotypes of three Rac GTPases in Drosophila mushroom body neurons. We show that progressive loss of combined Rac1, Rac2 and Mtl activity leads first to defects in axon branching, then guidance, and finally growth. Expression of a Rac1 effector domain mutant that does not bind Pak rescues growth, partially rescues guidance, but does not rescue branching defects of Rac mutant neurons. Mosaic analysis reveals both cell autonomous and non-autonomous functions for Rac GTPases, the latter manifesting itself as a strong community effect in axon guidance and branching. These results demonstrate the central role of Rac GTPases in multiple aspects of axon development in vivo, and suggest that axon growth, guidance and branching could be controlled by differential activation of Rac signalling pathways.


Assuntos
Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas rac de Ligação ao GTP/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Animais , Axônios/enzimologia , Divisão Celular , Movimento Celular , Drosophila , Proteínas de Drosophila/genética , Genes de Insetos , Dados de Sequência Molecular , Mutação , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteína RAC2 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...