Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 194(Pt A): 115403, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586270

RESUMO

Microplastic particles are widespread pollutants in the sea and filter-feeding sponges have recently been suggested as useful monitoring organisms. However, the fate of microplastic particles in sponges is poorly understood, yet crucial for interpreting monitoring data. The present study aims to help develop sponges as more useful monitoring organisms for microplastic in the sea. Here, we describe the fate of inedible (2 and 10 µm) plastic beads compared to that of edible bacteria and algal cells captured in the marine demosponge Halichondria panicea. Small Cyanobium bacillare cells entered the choanocyte chambers and were phagocytized by choanocytes, while larger Rhodomonas salina cells were captured in incurrent canals and phagocytized in the mesohyl. Small 2 µm-beads were captured by choanocytes and subsequently expelled into the excurrent canals after 58 ± 34 min. Larger 10 µm-beads were captured in the incurrent canals and transferred to the mesohyl, where amoeboid cells moved them across the mesohyl before they were expelled into the excurrent canal after 95 ± 36 min. SEM observations further indicated engulfment of plastic beads on the outer sponge surface. This insight provides useful information on how sponges, in general, treat microplastic particles of various sizes. It helps us understand actual measured sizes and concentrations of microplastic particles in sponges in relation to those in the ambient water.


Assuntos
Poríferos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Bactérias , Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Mar Pollut Bull ; 188: 114702, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36791554

RESUMO

Jellyfish blooms may be important bioindicators for marine ecosystem degradation, including the accumulation of microplastics in pelagic food webs. Here we show growth, respiration and filtration rates of the moon jellyfish (Aurelia aurita s.l.) when fed high concentrations (350 L-1) of zooplankton prey (Artemia salina nauplii) and polystyrene (PS) or reference particles (charcoal; size range 50-500 µm). Our controlled feeding experiments reveal that inedible particles are ingested less efficiently compared to prey (retention efficiency ~60 % for PS) and actively removed from the gastrovascular system of ephyrae and medusae. Increased metabolic demands for excretion of inedible material (up to 76.7 ± 3.1 % of ingested prey biomass) suggest that overloading with microplastics can decelerate growth (observed maxima 26.1 % d-1 and 12.6 % d-1, respectively) and reproductive rates when food is limited. Possible consequences of this selective feeding strategy in response to proceeding microplastic pollution in the world's future oceans are discussed.


Assuntos
Microplásticos , Cifozoários , Animais , Plásticos , Ecossistema , Poliestirenos
3.
J Anim Ecol ; 89(3): 910-920, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31782797

RESUMO

Jellyfish blooms are conspicuous demographic events with significant ecological and socio-economic impact. Despite worldwide concern about an increased frequency and intensity of such mass occurrences, predicting their booms and busts remains challenging. Forecasting how jellyfish populations may respond to environmental change requires considering their complex life histories. Metagenic life cycles, which include a benthic polyp stage, can boost jellyfish mass occurrences via asexual recruitment of pelagic medusae. Here we present stage-structured matrix population models with monthly, individual-based demographic rates of all life stages of the moon jellyfish Aurelia aurita L. (sensu stricto). We investigate the life-stage dynamics of these complex populations under low and high food conditions to illustrate how changes in medusa density depend on non-medusa stage dynamics. We show that increased food availability can be an important ecological driver of jellyfish mass occurrences, as it can temporarily shift the population structure from polyp- to medusa-dominated. Projecting populations for a winter warming scenario additionally enhanced the booms and busts of jellyfish blooms. We identify demographic key variables that control the intensity and frequency of jellyfish blooms in response to environmental drivers such as habitat eutrophication and climate change. By contributing to an improved understanding of mass occurrence phenomena, our findings provide perspective for future management of ecosystem health.


Assuntos
Ecossistema , Cifozoários , Animais , Mudança Climática , Eutrofização , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA