Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(22): eadj4370, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809990

RESUMO

Tumor heterogeneity is a primary factor that contributes to treatment failure. Predictive tools, capable of classifying cancer cells based on their functions, may substantially enhance therapy and extend patient life span. The connection between cell biomechanics and cancer cell functions is used here to classify cells through mechanical measurements, via particle uptake. Machine learning (ML) was used to classify cells based on single-cell patterns of uptake of particles with diverse sizes. Three pairs of human cancer cell subpopulations, varied in their level of drug resistance or malignancy, were studied. Cells were allowed to interact with fluorescently labeled polystyrene particles ranging in size from 0.04 to 3.36 µm and analyzed for their uptake patterns using flow cytometry. ML algorithms accurately classified cancer cell subtypes with accuracy rates exceeding 95%. The uptake data were especially advantageous for morphologically similar cell subpopulations. Moreover, the uptake data were found to serve as a form of "normalization" that could reduce variation in repeated experiments.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Aprendizado de Máquina , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Tamanho da Partícula , Algoritmos , Poliestirenos/química , Citometria de Fluxo
2.
Commun Biol ; 6(1): 1157, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957280

RESUMO

Optimal clinical outcomes in cancer treatments could be achieved through the development of reliable, precise ex vivo tumor models that function as drug screening platforms for patient-targeted therapies. Microfluidic tumor-on-chip technology is emerging as a preferred tool since it enables the complex set-ups and recapitulation of the physiologically relevant physical microenvironment of tumors. In order to overcome the common hindrances encountered while using this technology, a fully 3D-printed device was developed that sustains patient-derived multicellular spheroids long enough to conduct multiple drug screening tests. This tool is both cost effective and possesses four necessary characteristics of effective microfluidic devices: transparency, biocompatibility, versatility, and sample accessibility. Compelling correlations which demonstrate a clinical proof of concept were found after testing and comparing different chemotherapies on tumor spheroids, derived from ten patients, to their clinical outcomes. This platform offers a potential solution for personalized medicine by functioning as a predictive drug-performance tool.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Avaliação Pré-Clínica de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Impressão Tridimensional , Dispositivos Lab-On-A-Chip , Microambiente Tumoral
3.
Adv Healthc Mater ; 12(30): e2301548, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37315950

RESUMO

Blockage of blood supply while administering chemotherapy to tumors, using trans-arterial chemoembolization (TACE), is the most common treatment for intermediate and advanced-stage unresectable Hepatocellular carcinoma (HCC). However, HCC is characterized by a poor prognosis and high recurrence rates (≈30%), partly due to a hypoxic pro-angiogenic and pro-cancerous microenvironment. This study investigates how modifying tissue stress while improving drug exposure in target organs may maximize the therapeutic outcomes. Porous degradable polymeric microspheres (MS) are designed to obtain a gradual occlusion of the hepatic artery that nourishes the liver, while enabling efficient drug perfusion to the tumor site. The fabricated porous MS are introduced intrahepatically and designed to release a combination therapy of Doxorubicin (DOX) and Tirapazamine (TPZ), which is a hypoxia-activated prodrug. Liver cancer cell lines that are treated with the combination therapy under hypoxia reveal a synergic anti-proliferation effect. An orthotopic liver cancer model, based on N1-S1 hepatoma in rats, is used for the efficacy, biodistribution, and safety studies. Porous DOX-TPZ MS are very effective in suppressing tumor growth in rats, and induction tissue necrosis is associated with high intratumor drug concentrations. Porous particles without drugs show some advantages over nonporous particles, suggesting that morphology may affect the treatment outcomes.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Ratos , Animais , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Microesferas , Distribuição Tecidual , Porosidade , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Tirapazamina/farmacologia , Tirapazamina/uso terapêutico , Hipóxia/tratamento farmacológico , Microambiente Tumoral
4.
Biomedicines ; 9(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34440151

RESUMO

Uptake of particles by cells involves various natural mechanisms that are essential for their biological functions. The same mechanisms are used in the engulfment of synthetic colloidal drug carriers, while the extent of the uptake affects the biological performance and selectivity. Thus far, little is known regarding the effect of external biomechanical stimuli on the capacity of the cells to uptake nano and micro carriers. This is relevant for anchorage-dependent cells that have detached from surfaces or for cells that travel in the body such as tumor cells, immune cells and various circulating stem cells. In this study, we hypothesize that cellular deformability is a crucial physical effector for the successful execution of the phagocytosis-like uptake in cancer cells. To test this assumption, we develop a well-controlled tunable method to compare the uptake of inert particles by cancer cells in adherent and non-adherent conditions. We introduce a self-designed 3D-printed apparatus, which enables constant stirring while facilitating a floating environment for cell incubation. We reveal a mechanically mediated phagocytosis-like behavior in various cancer cells, that was dramatically enhance in the detached cell state. Our findings emphasize the importance of including proper biomechanical cues to reliably mimic certain physiological scenarios. Beyond that, we offer a cost-effective accessible research tool to study mixed cultures for both adherent and non-adherent cells.

5.
Micromachines (Basel) ; 12(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071476

RESUMO

The understanding that systemic context and tissue crosstalk are essential keys for bridging the gap between in vitro models and in vivo conditions led to a growing effort in the last decade to develop advanced multi-organ-on-a-chip devices. However, many of the proposed devices have failed to implement the means to allow for conditions tailored to each organ individually, a crucial aspect in cell functionality. Here, we present two 3D-print-based fabrication methods for a generic multi-organ-on-a-chip device: One with a PDMS microfluidic core unit and one based on 3D-printed units. The device was designed for culturing different tissues in separate compartments by integrating individual pairs of inlets and outlets, thus enabling tissue-specific perfusion rates that facilitate the generation of individual tissue-adapted perfusion profiles. The device allowed tissue crosstalk using microchannel configuration and permeable membranes used as barriers between individual cell culture compartments. Computational fluid dynamics (CFD) simulation confirmed the capability to generate significant differences in shear stress between the two individual culture compartments, each with a selective shear force. In addition, we provide preliminary findings that indicate the feasibility for biological compatibility for cell culture and long-term incubation in 3D-printed wells. Finally, we offer a cost-effective, accessible protocol enabling the design and fabrication of advanced multi-organ-on-a-chip devices.

6.
Pharmaceutics ; 13(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374752

RESUMO

Microfluidics research for various applications, including drug delivery, cell-based assays and biomedical research has grown exponentially. Despite this technology's enormous potential, drawbacks include the need for multistep fabrication, typically with lithography. We present a one-step fabrication process of a microfluidic chip for drug dissolution assays based on a 3D printing technology. Doxorubicin porous and non-porous microspheres, with a mean diameter of 250µm, were fabricated using a conventional "batch" or microfluidic method, based on an optimized solid-in-oil-in-water protocol. Microspheres fabricated with microfluidics system exhibited higher encapsulation efficiency and drug content as compared with batch formulations. We determined drug release profiles of microspheres in varying pH conditions using two distinct dissolution devices that differed in their mechanical barrier structures. The release profile of the "V" shape barrier was similar to that of the dialysis sac test and differed from the "basket" barrier design. Importantly, a cytotoxicity test confirmed biocompatibility of the printed resin. Finally, the chip exhibited high durability and stability, enabling multiple recycling sessions. We show how the combination of microfluidics and 3D printing can reduce costs and time, providing an efficient platform for particle production while offering a feasible cost-effective alternative to clean-room facility polydimethylsiloxane-based chip microfabrication.

7.
Sci Adv ; 6(3): eaax2861, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31998832

RESUMO

The malignancy potential is correlated with the mechanical deformability of the cancer cells. However, mechanical tests for clinical applications are limited. We present here a Triangular Correlation (TrC) between cell deformability, phagocytic capacity, and cancer aggressiveness, suggesting that phagocytic measurements can be a mechanical surrogate marker of malignancy. The TrC was proved in human prostate cancer cells with different malignancy potential, and in human bladder cancer and melanoma cells that were sorted into subpopulations based solely on their phagocytic capacity. The more phagocytic subpopulations showed elevated aggressiveness ex vivo and in vivo. The uptake potential was preserved, and differences in gene expression and in epigenetic signature were detected. In all cases, enhanced phagocytic and aggressiveness phenotypes were correlated with greater cell deformability and predicted by a computational model. Our multidisciplinary study provides the proof of concept that phagocytic measurements can be applied for cancer diagnostics and precision medicine.


Assuntos
Neoplasias/etiologia , Neoplasias/metabolismo , Algoritmos , Animais , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Endocitose , Xenoenxertos , Humanos , Camundongos , Modelos Teóricos , Metástase Neoplásica , Neoplasias/patologia , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...