Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6694): 428-437, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662827

RESUMO

A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.


Assuntos
Bacteroides fragilis , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Neoplasias , Vitamina D , Animais , Feminino , Humanos , Masculino , Camundongos , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/microbiologia , Neoplasias/terapia , Vitamina D/administração & dosagem , Vitamina D/metabolismo , Dieta , Linhagem Celular Tumoral , Calcifediol/administração & dosagem , Calcifediol/metabolismo , Proteína de Ligação a Vitamina D/genética , Proteína de Ligação a Vitamina D/metabolismo
2.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38410432

RESUMO

Acetylation of protein and RNA represent a critical event for development and cancer progression. NAT10 is the only known RNA acetylase that catalyzes the N4-actylcytidine (ac4C) modification of RNAs. Here, we show that the loss of NAT10 significantly decreases lung metastasis in allograft and genetically engineered mouse models of breast cancer. NAT10 interacts with a mechanosensitive, metastasis susceptibility protein complex at the nuclear pore. In addition to its canonical role in RNA acetylation, we find that NAT10 interacts with p300 at gene enhancers. NAT10 loss is associated with p300 mislocalization into heterochromatin regions. NAT10 depletion disrupts enhancer organization, leading to alteration of gene transcription necessary for metastatic progression, including reduced myeloid cell-recruiting chemokines that results in a less metastasis-prone tumor microenvironment. Our study uncovers a distinct role of NAT10 in enhancer organization of metastatic tumor cells and suggests its involvement in the tumor-immune crosstalk dictating metastatic outcomes.

3.
Immunity ; 55(4): 582-585, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417671

RESUMO

Immune checkpoint blockade has dramatically improved cancer therapy but remains ineffective for most colorectal tumors. In this issue of Immunity, Peuker et al. describe a microbiota-myeloid-tumor cell crosstalk that inhibits CD8+ T cells and promotes colorectal cancer progression.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Linhagem Celular Tumoral , Humanos , Contagem de Linfócitos , Células Mieloides/patologia , Microambiente Tumoral
5.
Cancer Cell ; 39(10): 1314-1316, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34637746

RESUMO

A recent report in Nature Medicine pinpoints a role for gut microbiota in response and toxicity to combined immune checkpoint blockade targeting CTLA-4 and PD-1. This emergent study provides insights that can be used to leverage microbiota in the design of anticancer therapies to mitigate toxicity while enhancing efficacy.


Assuntos
Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Antígeno CTLA-4 , Humanos
6.
Cell ; 184(21): 5338-5356.e21, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34624222

RESUMO

The tumor microenvironment (TME) influences cancer progression and therapy response. Therefore, understanding what regulates the TME immune compartment is vital. Here we show that microbiota signals program mononuclear phagocytes in the TME toward immunostimulatory monocytes and dendritic cells (DCs). Single-cell RNA sequencing revealed that absence of microbiota skews the TME toward pro-tumorigenic macrophages. Mechanistically, we show that microbiota-derived stimulator of interferon genes (STING) agonists induce type I interferon (IFN-I) production by intratumoral monocytes to regulate macrophage polarization and natural killer (NK) cell-DC crosstalk. Microbiota modulation with a high-fiber diet triggered the intratumoral IFN-I-NK cell-DC axis and improved the efficacy of immune checkpoint blockade (ICB). We validated our findings in individuals with melanoma treated with ICB and showed that the predicted intratumoral IFN-I and immune compositional differences between responder and non-responder individuals can be transferred by fecal microbiota transplantation. Our study uncovers a mechanistic link between the microbiota and the innate TME that can be harnessed to improve cancer therapies.


Assuntos
Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Microbiota , Monócitos/metabolismo , Microambiente Tumoral , Akkermansia/efeitos dos fármacos , Akkermansia/fisiologia , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Fibras na Dieta/farmacologia , Fosfatos de Dinucleosídeos/administração & dosagem , Fosfatos de Dinucleosídeos/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunomodulação/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
8.
Nat Med ; 26(5): 781-791, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284588

RESUMO

Although immunotherapy has revolutionized cancer treatment, only a subset of patients demonstrate durable clinical benefit. Definitive predictive biomarkers and targets to overcome resistance remain unidentified, underscoring the urgency to develop reliable immunocompetent models for mechanistic assessment. Here we characterize a panel of syngeneic mouse models, representing a variety of molecular and phenotypic subtypes of human melanomas and exhibiting their diverse range of responses to immune checkpoint blockade (ICB). Comparative analysis of genomic, transcriptomic and tumor-infiltrating immune cell profiles demonstrated alignment with clinical observations and validated the correlation of T cell dysfunction and exclusion programs with resistance. Notably, genome-wide expression analysis uncovered a melanocytic plasticity signature predictive of patient outcome in response to ICB, suggesting that the multipotency and differentiation status of melanoma can determine ICB benefit. Our comparative preclinical platform recapitulates melanoma clinical behavior and can be employed to identify mechanisms and treatment strategies to improve patient care.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Imunoterapia , Melanoma/patologia , Melanoma/terapia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CTLA-4/imunologia , Células Cultivadas , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Ipilimumab/uso terapêutico , Melanoma/diagnóstico , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prognóstico , Receptor de Morte Celular Programada 1/imunologia , RNA-Seq , Resultado do Tratamento , Sequenciamento Completo do Genoma
9.
Methods Enzymol ; 632: 309-337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32000903

RESUMO

The tumor microenvironment (TME) is a highly complex and dynamic ensemble of cells of which a variety of immune cells are a major component. The unparalleled results obtained with immunotherapeutic approaches have underscored the importance of examining the immune landscape of the TME. Recent technological advances have incorporated high-throughput techniques at the single cell level, such as single cell RNA sequencing, mass cytometry, and multi-parametric flow cytometry to the characterization of the TME. Among them, flow cytometry is the most broadly used both in research and clinical settings and multi-color analysis is now routinely performed. The high dimensionality of the data makes the traditional manual gating strategy in 2D scatter plots very difficult. New unbiased visualization techniques provide a solution to this problem. Here we describe the steps to characterize the immune cell compartment in the TME in mouse tumor models by high-parametric flow cytometry, from the experimental setup to the analysis methodology with special emphasis on the use of unsupervised algorithms.


Assuntos
Citometria de Fluxo/métodos , Sistema Imunitário/citologia , Neoplasias/imunologia , Microambiente Tumoral , Algoritmos , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Análise por Conglomerados , Sistema Imunitário/imunologia , Camundongos
10.
Cancer Cell ; 31(2): 161-163, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28196588

RESUMO

Type I interferons have been shown to play a major role in anti-cancer immunity. In this issue of Cancer Cell, Katlinski et al. describe tumor-induced degradation of type I interferon receptor IFNAR1 chain as a new immune-evasion mechanism in colorectal cancers. Stabilizing IFNAR1 inhibits tumor growth and improves immunotherapy efficacy.


Assuntos
Interferon Tipo I/metabolismo , Evasão Tumoral , Humanos
11.
Immunity ; 45(4): 714-716, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760335

RESUMO

It has recently become apparent that the gut microbiota modulates the response to cancer therapy. In this issue of Immunity, Daillère et al. (2016) identified two bacterial species potentiating the anti-tumor effect of cyclophosphamide that are kept in check by the sensor NOD2.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Neoplasias/microbiologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico
12.
J Leukoc Biol ; 100(5): 865-879, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27605211

RESUMO

The gut microbiota is a complex and dynamic microbial ecosystem that plays a fundamental role in host physiology. Locally, the gut commensal microbes/host symbiotic relationship is vital for barrier fortification, nutrient absorption, resistance against intestinal pathogens, and the development and maintenance of the mucosal immune system. It is now clear that the effects of the indigenous intestinal flora extend beyond the gut, ranging from shaping systemic immune responses to metabolic and behavioral functions. However, the underlying mechanisms of the gut microbiota/systemic immune system interactions remain largely unknown. Myeloid cells respond to microbial signals, including those derived from commensals, and initiate innate and adaptive immune responses. In this review, we focus on the impact of the gut microbiota on myeloid cells at extraintestinal sites. In particular, we discuss how commensal-derived signals affect steady-state myelopoiesis and cellular function and how that influences the response to infection and cancer therapy.


Assuntos
Microbioma Gastrointestinal/imunologia , Células Mieloides/imunologia , Imunidade Adaptativa , Animais , Citocinas/imunologia , Disbiose/imunologia , Homeostase , Humanos , Imunidade Inata , Infecções/imunologia , Inflamação/imunologia , Modelos Imunológicos , Mielopoese , Neoplasias/imunologia , Neoplasias/microbiologia , Neoplasias/terapia , Neutrófilos/imunologia , Simbiose/imunologia , Potência de Vacina
13.
Cell Host Microbe ; 18(6): 646-8, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26651940

RESUMO

Blockade of immune checkpoint molecules, a group of molecules normally involved in maintaining self-tolerance and limiting T cell responses, has emerged as a breakthrough in cancer therapy. Two recent studies published in Science show that, in mice, gut commensal microbes promote antitumor immunity and may determine therapy efficacy.


Assuntos
Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Modelos Animais de Doenças , Tolerância Imunológica , Camundongos , Linfócitos T/imunologia
14.
Cancer Immunol Res ; 3(2): 103-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25660553

RESUMO

Myeloid cells represent a major component of the tumor microenvironment, where they play divergent dual roles. They can induce antitumor immune responses, but mostly they promote immune evasion, tumor progression, and metastasis formation. Thus, strategies aiming at reprogramming the tumor microenvironment represent a promising immunotherapy approach. Myeloid cells respond to environmental factors including signals derived from commensal microbes. In this Cancer Immunology at the Crossroads overview, we discuss recent advances on the effects of the commensal microbiota on myeloid-cell functions and how they affect the response to cancer therapy.


Assuntos
Microbiota/imunologia , Células Mieloides/imunologia , Neoplasias/terapia , Animais , Diferenciação Celular/imunologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Neoplasias/imunologia , Neoplasias/microbiologia , Simbiose/imunologia , Microambiente Tumoral/imunologia
15.
Eur J Immunol ; 45(1): 17-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25328099

RESUMO

Commensal microorganisms colonize barrier surfaces of all multicellular organisms, including those of humans. For more than 500 million years, commensal microorganisms and their hosts have coevolved and adapted to each other. As a result, the commensal microbiota affects many immune and nonimmune functions of their hosts, and de facto the two together comprise one metaorganism. The commensal microbiota communicates with the host via biologically active molecules. Recently, it has been reported that microbial imbalance may play a critical role in the development of multiple diseases, such as cancer, autoimmune conditions, and increased susceptibility to infection. In this review, we focus on the role of the commensal microbiota in the development, progression, and immune evasion of cancer, as well as some modulatory effects on the treatment of cancer. In particular, we discuss the mechanisms of microbiota-mediated regulation of innate and adaptive immune responses to tumors, and the consequences on cancer progression and whether tumors subsequently become resistant or susceptible to different anticancer therapeutic regiments.


Assuntos
Doenças Autoimunes/microbiologia , Carcinogênese/imunologia , Microbiota/imunologia , Neoplasias/microbiologia , Imunidade Adaptativa , Animais , Antineoplásicos/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/patologia , Evolução Biológica , Carcinogênese/patologia , Humanos , Imunidade Inata , Imunomodulação , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Metagenoma/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Simbiose/imunologia , Evasão Tumoral
16.
Cell Host Microbe ; 15(3): 295-305, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24629336

RESUMO

Both microbes and tumors activate innate resistance, tissue repair, and adaptive immunity. Unlike acute infection, tumor growth is initially unapparent; however, inflammation and immunity affect all phases of tumor growth from initiation to progression and dissemination. Here, we discuss the shared features involved in the immune response to infection and cancer including modulation by commensal microbiota, reactive hematopoiesis, chronic immune responses and regulatory mechanisms to prevent collateral tissue damage. This comparative analysis of immunity to infection and cancer furthers our understanding of the basic mechanisms underlying innate resistance and adaptive immunity and their translational application to the design of new therapeutic approaches.


Assuntos
Imunidade Adaptativa , Doenças Transmissíveis/imunologia , Imunidade Inata , Neoplasias/imunologia
17.
Science ; 342(6161): 967-70, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24264989

RESUMO

The gut microbiota influences both local and systemic inflammation. Inflammation contributes to development, progression, and treatment of cancer, but it remains unclear whether commensal bacteria affect inflammation in the sterile tumor microenvironment. Here, we show that disruption of the microbiota impairs the response of subcutaneous tumors to CpG-oligonucleotide immunotherapy and platinum chemotherapy. In antibiotics-treated or germ-free mice, tumor-infiltrating myeloid-derived cells responded poorly to therapy, resulting in lower cytokine production and tumor necrosis after CpG-oligonucleotide treatment and deficient production of reactive oxygen species and cytotoxicity after chemotherapy. Thus, optimal responses to cancer therapy require an intact commensal microbiota that mediates its effects by modulating myeloid-derived cell functions in the tumor microenvironment. These findings underscore the importance of the microbiota in the outcome of disease treatment.


Assuntos
Intestinos/microbiologia , Microbiota/fisiologia , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Antibacterianos/administração & dosagem , Apresentação de Antígeno/genética , Antineoplásicos/uso terapêutico , Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Regulação para Baixo , Regulação da Expressão Gênica , Vida Livre de Germes , Imunoterapia , Inflamação/genética , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Transplante de Neoplasias , Neoplasias/microbiologia , Oligodesoxirribonucleotídeos/uso terapêutico , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina , Fagocitose/genética , Espécies Reativas de Oxigênio/metabolismo , Simbiose , Fator de Necrose Tumoral alfa/metabolismo
18.
Nat Immunol ; 13(10): 932-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22990891

RESUMO

Resistance mechanisms of the innate and adaptive immune responses prevent the colonization of foreign organisms in unwanted anatomical sites and participate in tissue repair and restoration of homeostasis after damage induced either by the invasion of pathogenic microbes or by the organism's response to them. The intensity of the response is controlled and limited by positive and negative feedback circuits that aim at preventing collateral tissue damage. In this Review we will discuss the protective and pathogenic effects of host-commensal microbiota mutualism on the immune response and illustrate some examples of collateral tissue and systemic damage caused by immunity to pathogens.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Metagenoma/imunologia , Animais , Quimiocinas/imunologia , Quimiocinas/metabolismo , Citocinas , Homeostase , Humanos , Tolerância Imunológica , Simbiose , Subpopulações de Linfócitos T/imunologia
19.
Immunity ; 36(6): 1047-59, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22749354

RESUMO

Dendritic cells (DCs), monocytes, and/or macrophages initiate host-protective immune responses to intracellular pathogens in part through interleukin-12 (IL-12) production, although the relative contribution of tissue resident versus recruited cells has been unclear. Here, we showed that after intraperitoneal infection with Toxoplasma gondii cysts, resident mononuclear phagocytes are replaced by circulating monocytes that differentiate in situ into inflammatory DCs (moDCs) and F4/80(+) macrophages. Importantly, NK cell-derived interferon-γ (IFN-γ) was required for both the loss of resident mononuclear phagocytes and the local differentiation of monocytes into macrophages and moDCs. This newly generated moDC population and not the resident DCs (or macrophages) served as the major source of IL-12 at the site of infection. Thus, NK cell-derived IFN-γ is important in both regulating inflammatory cell dynamics and in driving the local differentiation of monocytes into the cells required for initiating the immune response to an important intracellular pathogen.


Assuntos
Células Dendríticas/imunologia , Interferon gama/fisiologia , Células Matadoras Naturais/imunologia , Monócitos/imunologia , Transferência Adotiva , Animais , Antígenos Ly/análise , Diferenciação Celular , Quimiotaxia de Leucócito , Células Dendríticas/patologia , Células Dendríticas/transplante , Genes Reporter , Subunidade p40 da Interleucina-12/biossíntese , Subunidade p40 da Interleucina-12/genética , Células Matadoras Naturais/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/química , Monócitos/patologia , Monócitos/transplante , Fator 88 de Diferenciação Mieloide/fisiologia , Neutrófilos/imunologia , Peritonite/imunologia , Peritonite/parasitologia , Fagócitos/classificação , Fagócitos/imunologia , Fagócitos/patologia , Receptores de Interferon/deficiência , Receptores de Interferon/fisiologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Organismos Livres de Patógenos Específicos , Subpopulações de Linfócitos T/imunologia , Toxoplasmose Animal/imunologia , Receptor de Interferon gama
20.
J Clin Invest ; 121(12): 4746-57, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22056381

RESUMO

Solid tumors are complex masses with a local microenvironment, or stroma, that supports tumor growth and progression. Among the diverse tumor-supporting stromal cells is a heterogeneous population of myeloid-derived cells. These cells are alternatively activated and contribute to the immunosuppressive environment of the tumor; overcoming their immunosuppressive effects may improve the efficacy of cancer immunotherapies. We recently found that engineering tumor-specific CD8(+) T cells to secrete the inflammatory cytokine IL-12 improved their therapeutic efficacy in the B16 mouse model of established melanoma. Here, we report the mechanism underlying this finding. Surprisingly, direct binding of IL-12 to receptors on lymphocytes or NK cells was not required. Instead, IL-12 sensitized bone marrow-derived tumor stromal cells, including CD11b(+)F4/80(hi) macrophages, CD11b(+)MHCII(hi)CD11c(hi) dendritic cells, and CD11b(+)Gr-1(hi) myeloid-derived suppressor cells, causing them to enhance the effects of adoptively transferred CD8(+) T cells. This reprogramming of myeloid-derived cells occurred partly through IFN-γ. Surprisingly, direct presentation of antigen to the transferred CD8(+) T cells by tumor was not necessary; however, MHCI expression on host cells was essential for IL-12-mediated antitumor enhancements. These results are consistent with a model in which IL-12 enhances the ability of CD8(+) T cells to collapse large vascularized tumors by triggering programmatic changes in otherwise suppressive antigen-presenting cells within tumors and support the use of IL-12 as part of immunotherapy for the treatment of solid tumors.


Assuntos
Linfócitos T CD8-Positivos/transplante , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imunoterapia Adotiva , Interleucina-12/fisiologia , Melanoma Experimental/terapia , Células Mieloides/fisiologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Animais , Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Antígenos de Neoplasias/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Linfócitos T CD8-Positivos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/imunologia , Inflamação/genética , Interferon gama/fisiologia , Interleucina-12/genética , Interleucina-12/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/patologia , Macrófagos/fisiologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Quimera por Radiação , Proteínas Recombinantes de Fusão/fisiologia , Células Estromais/patologia , Células Estromais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...