Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 169: 58-72, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28847648

RESUMO

The changes in protein abundance induced by cold hardening were analysed by 2 DE in ten doubled haploid (DH) lines of winter barley, highly differentiated with respect to freezing tolerance level. Among 45 differential proteins identified by MALDI-TOF/TOF, the majority was classified as related to photosynthesis, carbohydrate metabolism, oxidation-reduction reactions and stress response. Among the detected proteins, higher abundance of RuBisCO large and small subunits, RuBisCO activase, two Oxygen-evolving enhancer proteins, Ferredoxin-NADP reductase, Cytochrome P450-dependent fatty acid hydroxylase and 14-3-3 protein was associated with higher freezing tolerance level. Lower relative level of hypothetical ATP synthase beta subunit, uncharacterized mitochondrial protein AtMg00810 and ribosomal RNA small subunit methyltransferase G also seems to be important. The results of proteomic studies were complemented by the evaluation of photosynthetic apparatus acclimation, showing distinctive differences between the studied genotypes in the number of active PSII reaction centres (RC/CSm). Additionally, the analysis of antioxidative enzyme activities suggests the importance of H2O2 as a signalling molecule possibly involved in the initiation of cold-induced plant acclimation. However, in DH lines with high freezing tolerance, H2O2 generation during cold hardening treatment was accompanied by more stable activity of catalase, H2O2-decomposing enzyme. SIGNIFICANCE: In the study, the changes in protein abundance induced by cold hardening treatment were analysed by two-dimensional gel electrophoresis in ten doubled haploid (DH) lines of winter barley. Harnessing DH technology resulted in distinctive widening of genetic variation with respect to freezing tolerance level. Both the cold-hardening effect on the protein pattern in an individual winter barley DH line as well as the variation among the selected DH lines were investigated, which resulted in the identification of 45 differentiated proteins classified as involved in 14 metabolic pathways and cellular processes. Among them, eight proteins: (1) the precursor of RuBisCO large subunit, (2) RuBisCO small subunit (partial), (3) RuBisCO activase small isoform, (4) the precursor of Oxygen-evolving enhancer protein 1-like (predicted protein), (5) Oxygen-evolving enhancer protein 2, (6) the leaf isozyme of Ferredoxin-NADP reductase, (7) hypothetical protein M569_12509 Cytochrome P450-dependent fatty acid hydroxylase-like and (8) hypothetical protein BRADI_1g11290 (14-3-3 protein A-like) were accumulated to a higher level in leaves of cold-hardened seedlings of freezing tolerant winter barley DH lines in comparison with susceptible ones. Three others: (9) hypothetical protein BRADI_5g05668 F1 ATP synthase beta subunit-like, (10) predicted protein uncharacterized mitochondrial protein AtMg00810-like and (11) BnaA02g08010D Ribosomal RNA small subunit methyltransferase G-like were detected at lower level in freezing tolerant seedlings in comparison with susceptible genotypes. The last two were for the first time linked to cold acclimation. The results of complementary analyses indicate that PSII activity and stability of antioxidative enzymes under low temperature are also very important for freezing tolerance acquisition.


Assuntos
Aclimatação/fisiologia , Hordeum/química , Proteínas de Plantas/metabolismo , Proteômica/métodos , Eletroforese em Gel Bidimensional , Congelamento , Hordeum/fisiologia , Oxirredutases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
2.
J Proteomics ; 169: 73-86, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28751243

RESUMO

The present study investigated drought-induced changes in proteome profiles of ten DH lines of winter barley, relatively varied in water deficit tolerance level. Additionally, the parameters describing the functioning of the photosynthetic apparatus and the activity of the antioxidative system were analysed. Water deficit (3-week growth in soil with water content reduced to ca. 35%) induced significant changes in leaf water relations and reduced photosynthetic activity, probably due to decreased stomatal conductance. It was associated with changes in protein abundance and altered activity of antioxidative enzymes. From 47 MS-identified proteins discriminating more tolerant from drought-sensitive genotypes, only two revealed distinctly higher while seven revealed lower abundance in drought-treated plants of tolerant DH lines in comparison to sensitive ones. The majority were involved in the dark phase of photosynthesis. Another factor of great importance seems to be the ability to sustain, during drought stress, relatively high activity of enzymes (SOD and CAT) decomposing reactive oxygen species and protecting plant cell from oxidative damages. Low molecular weight antioxidants seem to play less important roles. Our findings also suggest that high tolerance to drought stress in barley is a constitutively controlled trait regulated by the rate of protein synthesis and their activity level. BIOLOGICAL SIGNIFICANCE: According to our knowledge, this is the first comparative proteomic analysis of drought tolerance performed for the model set of several winter barley doubled haploid (DH) lines. We analysed both the drought impact on the protein pattern of individual winter barley DH lines as well as comparisons between them according to their level of drought tolerance. We have identified 47 proteins discriminating drought-tolerant from drought-sensitive genotypes. The majority was involved in the dark phase of photosynthesis. Another factor of great importance in our opinion seems to be the ability to sustain, during drought stress, relatively high activity of antioxidative enzymes (SOD and CAT) decomposing reactive oxygen species and protecting plant cell from oxidative damages. Our findings also suggest that high tolerance to drought stress in barley is a constitutively-controlled trait regulated by the rate of protein synthesis and their activity level.


Assuntos
Aclimatação/fisiologia , Secas , Hordeum/química , Proteínas de Plantas/metabolismo , Proteômica/métodos , Adaptação Biológica , Regulação da Expressão Gênica de Plantas , Genótipo , Hordeum/fisiologia , Oxirredutases/metabolismo , Fotossíntese , Proteínas de Plantas/genética
3.
J Plant Physiol ; 177: 30-43, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25666539

RESUMO

The breeding for resistance against fungal pathogens in winter triticale (Triticosecale Wittm.) continues to be hindered by a complexity of the resistance mechanisms, strong interaction with environmental conditions, and dependence on the plant genotype. We showed, that temperature below 4 °C induced the plant genotype-dependent resistance against the fungal pathogen Microdochium nivale. The mechanism involved, at least, the adjustment of the reactions in the PSII proximity and photoprotection, followed by an improvement of the growth and development. The genotypes capable to develop the cold-induced resistance, showed a higher maximum quantum yield of PSII and a more efficient integration of the primary photochemistry of light reactions with the dark reactions. Moreover, induction of the photoprotective mechanism, involving at least the peroxidases scavenging hydrogen peroxide, was observed for such genotypes. Adjustment of the photosynthesis and stress acclimation has enabled fast plant growth and avoidance of the developmental stages sensitive to fungal infection. The same mechanisms allowed the quick regrow of plants during the post-disease period. In contrast, genotypes that were unable to develop resistance despite cold hardening had less flexible balancing of the photoprotection and photoinhibition processes. Traits related to: photosynthesis-dependent cold-acclimation and cold-induced resistance; biomass accumulation and growth; as well as protection system involving peroxidases; were integrated also at a genetic level. Analysing 95 lines of the mapping population SaKa3006×Modus we determined region on chromosomes 5B and 7R shared within all tested traits. Moreover, similar expression pattern of a set of the genes related to PSII was determined with the metaanalysis of the multiple microarray experiments. Comparable results for peroxidases, involving APXs and GPXs and followed by PRXs, indicated a similar function during cold acclimation and defense responses. These data provide a new insight into the cross talk between cold acclimation and cold-induced resistance in triticale, indicating a key role of photosynthesis-related processes.


Assuntos
Fungos/fisiologia , Doenças das Plantas/microbiologia , Triticale/microbiologia , Triticale/fisiologia , Aclimatação , Temperatura Baixa , Peroxidases/genética , Peroxidases/metabolismo , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticale/genética , Triticale/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...