Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985520

RESUMO

The involvement of 1,3-dipolar cycloaddition (1,3-DP), double bond migration, metathesis, and nitrile oxide (including in situ-generated nitrile oxide) as dipoles, together with the C=C bond containing dipolarophiles, in the syntheses of 2-isoxazolines is presented. Methods for synthesizing isoxazolines (other than 1,3-DP cycloaddition) were also presented briefly. Various methods of nitrile oxide preparation, especially in situ-generated procedures, are presented. Special attention was paid to the application of various combinations of 1,3-DP cycloaddition with double bond migration (DBM) and with alkene metathesis (AM) in the syntheses of trisubstituted isoxazolines. Allyl compounds of the type QCH2CH=CH2 (Q = ArO, ArS, Ar, and others) play the role of dipolarophile precursors in the combinations of DPC mentioned, DBM and AM. Mechanistic aspects of cycloadditions, i.e., concerted or stepwise reaction mechanism and their regio- and stereoselectivity are also discussed from experimental and theoretical points of view. Side reactions accompanying cycloaddition, especially nitrile oxide dimerization, are considered. 2-Isoxazoline applications in organic synthesis and their biological activity, broad utility in medicine, agriculture, and other fields were also raised. Some remaining challenges in the field of 1,3-DP cycloaddition in the syntheses of isoxazolines are finally discussed.

2.
Materials (Basel) ; 15(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009318

RESUMO

Phenyl, naphthyl, polyarylphenyl, coronene, and other aromatic and polyaromatic moieties primarily influence the final materials' properties. One of the synthetic tools used to implement (hetero)aromatic moieties into final structures is Diels-Alder cycloaddition (DAC), typically combined with Scholl dehydrocondensation. Substituted 2-pyranones, 1,1-dioxothiophenes, and, especially, 1,3-cyclopentadienones are valuable substrates for [4 + 2] cycloaddition, leading to multisubstituted derivatives of benzene, naphthalene, and other aromatics. Cycloadditions of dienes can be carried out with extrusion of carbon dioxide, carbon oxide, or sulphur dioxide. When pyranones, dioxothiophenes, or cyclopentadienones and DA cycloaddition are aided with acetylenes including masked ones, conjugated or isolated diynes, or polyynes and arynes, aromatic systems are obtained. This review covers the development and the current state of knowledge regarding thermal DA cycloaddition of dienes mentioned above and dienophiles leading to (hetero)aromatics via CO, CO2, or SO2 extrusion. Particular attention was paid to the role that introduced aromatic moieties play in designing molecular structures with expected properties. Undoubtedly, the DAC variants described in this review, combined with other modern synthetic tools, constitute a convenient and efficient way of obtaining functionalized nanomaterials, continually showing the potential to impact materials sciences and new technologies in the nearest future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...