Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110705

RESUMO

Reflectance anisotropy spectroscopy (RAS) has been largely used to investigate organic compounds: Langmuir-Blodgett and Langmuir-Schaeffer layers, the organic molecular beam epitaxy growth in situ and in real time, thin and ultrathin organic films exposed to volatiles, in ultra-high vacuum (UHV), in controlled atmosphere and even in liquid. In all these cases, porphyrins and porphyrin-related compounds have often been used, taking advantage of the peculiar characteristics of RAS with respect to other techniques. The technical modification of a RAS spectrometer (CD-RAS: circular dichroism RAS) allows us to investigate the circular dichroism of samples instead of the normally studied linear dichroism: CD-RAS measures (in transmission mode) the anisotropy of the optical properties of a sample under right and left circularly polarized light. Although commercial spectrometers exist to measure the circular dichroism of substances, the "open structure" of this new spectrometer and its higher flexibility in design makes it possible to couple it with UHV systems or other experimental configurations. The importance of chirality in the development of organic materials (from solutions to the solid state, as thin layers deposited-in liquid or in vacuum-on transparent substrates) could open interesting possibilities to a development in the investigation of the chirality of organic and biological layers. In this manuscript, after the detailed explanation of the CD-RAS technique, some calibration tests with chiral porphyrin assemblies in solution or deposited in solid film are reported to demonstrate the quality of the results, comparing curves obtained with CD-RAS and a commercial spectrometer.

2.
Phys Chem Chem Phys ; 23(21): 12060-12067, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34013308

RESUMO

A terbium(iii)-bis(phthalocyaninato) neutral complex was deposited on the rutile TiO2(110) surface, and their interaction was studied by Scanning Tunneling Microscopy (STM) and X-ray Photoelectron Spectroscopy (XPS). It was found that the TiO2 rutile surface favours the adsorption of isolated molecules adopting a lying down configuration with the phthalocyanine planes tilted by about 30° when they lie in the first layer. The electronic and chemical properties of the molecules on the surface were studied by XPS as a function of the TiO2(110) substrate preparation. This study evidences that strong molecule-substrate interactions are present and a charge transfer process occurs from the molecule to the surface.

3.
J Phys Chem Lett ; 12(2): 869-875, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33428409

RESUMO

The nature of optical excitations and the spatial extent of excitons in organic semiconductors, both of which determine exciton diffusion and carrier mobilities, are key factors for the proper understanding and tuning of material performances. Using a combined experimental and theoretical approach, we investigate the excitonic properties of meso-tetraphenyl porphyrin-Zn(II) crystals. We find that several bands contribute to the optical absorption spectra, beyond the four main ones considered here as the analogue to the four frontier molecular orbitals of the Gouterman model commonly adopted for the isolated molecule. By using many-body perturbation theory in the GW and Bethe-Salpeter equation approach, we interpret the experimental large optical anisotropy as being due to the interplay between long- and short-range intermolecular interactions. In addition, both localized and delocalized excitons in the π-stacking direction are demonstrated to determine the optical response, in agreement with recent experimental observations reported for organic crystals with similar molecular packing.

4.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202819

RESUMO

Supramolecular chirality is one of the most important issues in different branches of science and technology, as stereoselective molecular recognition, catalysis, and sensors. In this paper, we report on the self-assembly of amphiphilic porphyrin derivatives possessing a chiral information on the periphery of the macrocycle (i.e., D- or L-proline moieties), in the presence of chiral amines as co-solute, such as chiral benzylamine derivatives. The aggregation process, steered by hydrophobic effect, has been studied in aqueous solvent mixtures by combined spectroscopic and topographic techniques. The results obtained pointed out a dramatic effect of these ligands on the morphology and on the supramolecular chirality of the final self-assembled structures. Scanning electron microscopy topography, as well as fluorescence microscopy studies revealed the formation of rod-like structures of micrometric size, different from the fractal structures formerly observed when the self-assembly process is carried out in the absence of chiral amine co-solutes. On the other hand, comparative experiments with an achiral porphyrin analogue strongly suggested that the presence of the prolinate moiety is mandatory for the achievement of the observed highly organized suprastructures. The results obtained would be of importance for unraveling the intimate mechanisms operating in the selection of the homochirality, and for the preparation of sensitive materials for the detection of chiral analytes, with tunable stereoselectivity and morphology.


Assuntos
Porfirinas/química , Estereoisomerismo
5.
Chemistry ; 24(66): 17538-17544, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30230050

RESUMO

Corrole derivatives have been recently employed in many applications at the solid-liquid interface. Therefore, the structural arrangement of the molecular layers in direct contact with the liquid is of fundamental interest. We investigated in solution the deposition of molecular layers of the previously prepared water-soluble phosphorus complex of a 2-sulfonato-10-(4-sulfonatophenyl)-5,15-dimesitylcorrole [see synthesis in our previous paper, M. Naitana et al., Chem. Eur. J. 2017, 23, 905-916]. The layer formation of P corroles onto the Au(111) surface was monitored by STM in situ, that is, with the substrate immersed in the solution. Marked differences in the morphology between the organic layer formed on the substrate and that deposited after solvent evaporation (drop casting) are reported. In particular, the coating of gold was more effective and stable in the presence of liquid. Preservation of functionality of the corrole molecules after adsorption was verified. This result validates the relevance of corrole layers at the solid-liquid interface to exploit the peculiar properties of these molecules in real-world applications.

6.
Nat Nanotechnol ; 12(11): 1104, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29109548
7.
Beilstein J Nanotechnol ; 6: 438-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821684

RESUMO

Despite the rising technological interest in the use of calcium-modified TiO2 surfaces in biomedical implants, the Ca/TiO2 interface has not been studied in an aqueous environment. This investigation is the first report on the use of in situ scanning tunneling microscopy (STM) to study calcium-modified rutile TiO2(110) surfaces immersed in high purity water. The TiO2 surface was prepared under ultrahigh vacuum (UHV) with repeated sputtering/annealing cycles. Low energy electron diffraction (LEED) analysis shows a pattern typical for the surface segregation of calcium, which is present as an impurity on the TiO2 bulk. In situ STM images of the surface in bulk water exhibit one-dimensional rows of segregated calcium regularly aligned with the [001] crystal direction. The in situ-characterized morphology and structure of this Ca-modified TiO2 surface are discussed and compared with UHV-STM results from the literature. Prolonged immersion (two days) in the liquid leads to degradation of the overlayer, resulting in a disordered surface. X-ray photoelectron spectroscopy, performed after immersion in water, confirms the presence of calcium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...