Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 103(3): L031201, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862680

RESUMO

Achieving a high conversion efficiency into relativistic electrons is central to short-pulse laser application and fundamentally relies on creating interaction regions with intensities ≫10^{18}W/cm^{2}. Small focal length optics are typically employed to achieve this goal; however, this solution is impractical for large kJ-class systems that are constrained by facility geometry, debris concerns, and component costs. We fielded target-mounted compound parabolic concentrators to overcome these limitations and achieved nearly an order-of-magnitude increase to the conversion efficiency and more than tripled electron temperature compared to flat targets. Particle-in-cell simulations demonstrate that plasma confinement within the cone and formation of turbulent laser fields that develop from cone wall reflections are responsible for the improved laser-to-target coupling. These passive target components can be used to improve the coupling efficiency for all high-intensity short-pulse laser applications, particularly at large facilities with long focal length optics.

2.
Rev Sci Instrum ; 81(10): 10E121, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033986

RESUMO

Moderately priced oscilloscopes available for the NIF power sensors and target diagnostics have 6 GHz bandwidths at 20-25 Gsamples/s (40 ps sample spacing). Some NIF experiments require cross timing between instruments be determined with accuracy better than 30 ps. A simple analysis algorithm for Gaussian-like pulses such as the 100-ps-wide NIF timing fiducial can achieve single-event cross-timing precision of 1 ps (1/50 of the sample spacing). The midpoint-timing algorithm is presented along with simulations that show why the technique produces good timing results. Optimum pulse width is found to be ∼2.5 times the sample spacing. Experimental measurements demonstrate use of the technique and highlight the conditions needed to obtain optimum timing performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...