Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867111

RESUMO

Acute nerve agent exposure can kill a person within minutes or produce multiple neurotoxic effects and subsequent brain damage with potential long-term adverse outcomes. Recent abuse of nerve-agents on Syrian civilians, during Japan terrorist attacks, and personal assassinations in the UK, and Malaysia indicate their potential threat to world population. Existing nerve agent antidotes offer only incomplete protection especially, if the treatment is delayed. To develop the effective drugs, it is advantageous to elucidate the underlying mechanisms of nerve agent-induced multiple neurological impairments. This study aimed to investigate the molecular basis of neuroinflammation during nerve agent toxicity with focus on inflammasome-associated proteins and neurodegeneration. In rats, NOD-like receptor family pyrin domain containing 3 (NLRP3), and glial fibrillary acidic protein (GFAP) immunoreactivity levels were considerably increased in the hippocampus, piriform cortex, and amygdala areas after single subcutaneous soman exposure (90 µg/kg-1). Western analysis indicated a notable increase in the neuroinflammatory indicator proteins, high mobility group box 1 (HMGB1) and inducible nitric oxide synthase (iNOS) levels. The presence of fluorojade-C-stained degenerating neurons in distinct rat brain areas is indicating the neurodegeneration during nerve agent toxicity. Pre-treatment with galantamine (3 mg/kg, - 30 min) followed by post-treatment of atropine (10 mg/kg, i.m.) and midazolam (5 mg/kg, i.m.), has completely protected animals from death induced by supra-lethal dose of soman (2XLD50) and reduced the neuroinflammatory and neurodegenerative changes. Results highlight that this new prophylactic and therapeutic drug combination might be an effective treatment option for soldiers deployed in conflict areas and first responders dealing with accidental/deliberate release of nerve agents.

2.
J Chem Neuroanat ; 136: 102388, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182038

RESUMO

Organophosphorus (OP) pesticides and insecticides are used in agriculture and other industries can also cause adverse effects through environmental exposures in the people working in agricultural and pesticide industries. OP nerve agent exposures have been associated with delayed neurotoxic effects including sleep disorders, cognitive malfunctions, and brain damage in Gulf War victims, and Japanese victims of terrorist attacks with nerve agents. However, the mechanisms behind such prolonged adverse effects after chronic OP nerve agent's exposures in survivors are not well understood. In the present study, male Wistar rats were subcutaneously exposed to nerve agent soman (0.25XLD50) for 21 consecutive days to evaluate the neurobehavioral, neuropathological and biochemical alterations (oxidative stress and antioxidants levels). Neurobehavioral studies using Elevated Plus Maze (EPM), T-Maze, and rotarod tests revealed that chronic soman exposure produced alterations in behavioral functions including increased anxiety and reduction in working memory and neuromuscular strength. Biochemical studies showed that antioxidants enzyme (glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) levels were reduced and oxidative stress (reduced glutathione (GSH) and lipid peroxidation levels (malondialdehyde (MDA)) were significantly increased in brain at 30 days in soman exposed rats as compared to control rats. Neuroselective fluorojade-c stain was used to examine the brain damage after chronic soman exposure. Results demonstrated that chronic soman exposure induced neurodegeneration as brain damage was detected at 30- and 90-days post exposure. The present study results suggest that chronic nerve agent exposures even at low doses may produce long-term adverse effects like neurobehavioral deficits in rats.


Assuntos
Lesões Encefálicas , Inseticidas , Agentes Neurotóxicos , Praguicidas , Soman , Humanos , Ratos , Masculino , Animais , Soman/toxicidade , Agentes Neurotóxicos/farmacologia , Ratos Wistar , Encéfalo , Antioxidantes/farmacologia , Estresse Oxidativo
3.
Acta Trop ; 235: 106623, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35940341

RESUMO

Kyasanur forest virus disease (KFD) is a major public health concern in India. Its etiology KFD virus causes haemorrhagic fever with severe sequelae in humans. Due to continuous spatiotemporal expansion of KFD in last decade, the incidences of positive cases have been increasing in both humans and primates. Early diagnosis is of prime importance for disease management and epidemiological containment. In the present study, the highly immunogenic Envelope Domain III (EDIII) antigen was produced using prokaryotic expression system with an yield of 8 mg/L. The protein was purified using affinity chromatography and confirmed for its immuno-reactivity by western blot and UPLCMS/MS analysis. The recombinant EDIII was used as an antigen for the standardization of ELISA to detect anti KFD IgM antibodies in humans. The ROC curve was prepared to set the optimum cut-off OD for the assay. The comparative evaluation of the assay with a reference MAC ELISA revealed 86.96% concordance, 82.22% sensitivity and 91.48% specificity. Inter-rater agreement was performed with kappa index revealing significant agreement between the assays. This is the first study using safe recombinant protein antigen-based detection of anti KFDV antibodies in humans. This simple and scalable ELISA assay will be applicable for large scale screening of samples for combating the emerging threats of KFD in newer territories.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Doença da Floresta de Kyasanur , Animais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunoglobulina M , Doença da Floresta de Kyasanur/diagnóstico , Doença da Floresta de Kyasanur/epidemiologia , Proteínas Recombinantes/genética
4.
Anal Methods ; 12(36): 4447-4456, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32856667

RESUMO

The development and optimization of an analytical method for the detection and identification of reactive metabolite of organochlorine chemical warfare agent nitrogen mustards (NMs), 2-[(2-chloroethyl)(alkyl)amino]ethanol (CEAAE), known as half nitrogen mustard, in blood samples is presented, herein. In this study, half nitrogen mustards in plasma are presented as a new and unambiguous biomarker of NM exposure since the fully hydrolyzed product, i.e., amino alcohols, are common industrial chemicals that can be present as such without getting exposed to NMs. Thus, the detection of half nitrogen mustard as a biomarker holds great significance for verification by the Chemical Weapon Convention (CWC) and will also be helpful in understanding the pharmacokinetics of NM-based chemotherapeutic pro-drugs. To the best of our knowledge, this is the first report on the detection of half nitrogen mustards in any matrice, including plasma. A very simple sample preparation protocol was developed for its extraction from plasma samples. Heptafluorobutyrylation and gas chromatography-tandem mass spectrometry in the positive chemical ionization mode were developed for the detection and identification of halfNMs. The developed method has shown excellent analytical figures of merits such as a wide range of linearity (1.0-50 ng mL-1), low limit of detection (0.3-0.5 ng mL-1), and low limit of quantification (1.0 ng mL-1). The interday and intraday reproducibilities were also less than 15%. The developed method was successfully applied to real-world samples; in vitro human plasma was spiked with ∼1 ng mL-1 of all the NMs and in vivo studies were done with rats intravenously exposed to 1 × LD50 of bis(2-chloroethyl)methylamine (HN2).


Assuntos
Mecloretamina , Compostos de Mostarda Nitrogenada , Animais , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Mecloretamina/toxicidade , Ratos , Espectrometria de Massas em Tandem
5.
ACS Chem Neurosci ; 11(17): 2638-2648, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32702963

RESUMO

The widespread use of organophosphorous (OP) compounds and recent misuse of nerve agents on civilians requires an urgent need to decode their complex biological response to develop effective drugs. Proteomic profiling of biological target tissues helps in identification of molecular toxicity mechanisms. Quantitative proteomics profiling of the rat hippocampus was studied in this study. Liquid chromatography mass spectrometry (LC-MS) analysis of tandem mass tag (TMT)-labeled lysates identified 6356 proteins. A total of 69, 61, and 77 proteins were upregulated, and 66, 35, and 70 proteins were downregulated at 30 min, 1 day, and 7 days after soman exposure. This is the first report on the soman-induced proteomic changes to the best of our knowledge. Bioinformatics analysis revealed soman-induced broad-range proteomic changes in key pathways related to glutamate, acetylcholine, GABA, 5-hydroxytryptamine, and adrenergic receptors, G-protein signaling, chemokine and cytokine-mediated inflammation, cytoskeleton, neurodegeneration (Parkinson's and Alzheimer's), Wnt signaling, synaptic vesicle trafficking, MAP kinases, proteosome degradation, metabolism, and cell death. Selected protein changes were verified by immunoblotting, and neuropathological findings indicated significant brain damage. Results demonstrate that persistent proteomic changes in the brain can cause multiple neurological effects through cholinergic and non-cholinergic pathways, and these mechanistic insights are useful in the development of novel drugs.


Assuntos
Agentes Neurotóxicos , Soman , Animais , Cromatografia Líquida , Hipocampo , Proteômica , Ratos
6.
Toxicology ; 423: 54-61, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102696

RESUMO

The detrimental effects of organophosphate (OP) nerve agents have been reported but the mechanisms mediating these multiple effects are not well understood. Recent use of nerve agents in Syria and the UK illustrate their continuous threat to the modern world. Epigenetic and autophagy studies are useful to address the issues related to regulation of gene and protein expression by which nerve agents could impact on human health. These studies help to understand molecular mechanisms underlying the multiple neurotoxic effects of nerve agents. In the present study, changes in epigenetic (global DNA methylation and histone acetylation) and autophagic marker proteins were studied in the nerve agent sensitive rat brain areas (piriform cortex and hippocampus) after soman (1xLD50) exposure. Global DNA methylation analysis revealed that nerve agent induced hypomethylation in the brain regions at 1 and 7 days post exposure. In contrast, DNA hypermethylation was observed at 30 days post soman exposure, demonstrating a possible compensatory mechanism. Western blot analysis showed significant increase in the histone acetylation levels after soman exposure in the piriform cortex and hippocampus. The present study observed the changes in autophagic proteins of nerve agent poisoning for the first time to the best of our knowledge. Immunoreactivity levels of autophagic proteins (LC3-II, ATG-5 and p62) were transiently increased in the rat piriform cortex and hippocampus after soman exposure. In conclusion, this study provides insight into the epigenetic and autophagic changes in the brain following soman exposure and their possible role in the neuronal damage and development of multiple neurological effects.


Assuntos
Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Hipocampo/efeitos dos fármacos , Córtex Piriforme/efeitos dos fármacos , Soman/toxicidade , Acetilação/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Colinesterases/sangue , Colinesterases/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Hipocampo/metabolismo , Histonas/metabolismo , Masculino , Córtex Piriforme/metabolismo , Ratos Wistar
7.
Arch Toxicol ; 93(6): 1473-1484, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30923868

RESUMO

Humans are constantly exposed to a wide range of reactive and toxic chemicals from the different sources in everyday life. Identification of the exposed chemical helps in the detection and understanding the exposure associated adverse health effects. Covalent adducts of proteins and DNA formed after xenobiotics exposure may serve as readily measurable indicators of these exposures. Measuring the exposed chemicals with focus on adducts resulting from the nucleophilic interactions with blood proteins is useful in the development of diagnostic markers. Particularly, the most abundant proteins such as albumin and hemoglobin acts as dominant scavengers for many reactive chemicals in blood and can serve as excellent diagnostic candidates to determine the type of chemical exposure. This review focuses on the potential application of an adductomics approach for the screening of bimolecular adducts of chemical warfare agents (CWAs). Recent incidents of CWAs use in Syria, Malaysia, and the UK illustrate the continuing threat of chemical warfare agents in the modern world. Detection of CWAs and their metabolites in blood or in other body fluids of victims depends on immediate access to victims. Concentrations of intact CWAs in body fluids of surviving victims may decline rapidly within a few days. Certain CWAs, particularly nerve agents and vesicants, form covalent bonds with certain amino acids to form CWA-protein adducts. Proteins that are abundant in the blood, including albumin and hemoglobin, may carry these adducts longer after the original exposure. We searched MEDLINE and ISI Web of Science databases using the key terms "adductomics" "adducts of CWAs," "CWAs adducts detection in the biological samples," "protein adducts of CWAs," alone and in combination with the keywords "detection" "intoxication" "exposure" "adverse effects" and "toxicity." We also included non-peer-reviewed sources such as text books, relevant newspaper reports, and applicable Internet resources. We screened bibliographies of identified articles for additional relevant studies including non-indexed reports. These searches produced 1931 citations of which only relevant and nonduplicate citations were considered for this review. The analysis of biomedical samples has several purposes including detecting and identifying the type of chemical agent exposed, understanding the biological mechanism, assists in giving adequate treatment, determining the cause of death and providing evidence in a court of justice for forensic investigations. Rapid advances in the mass spectrometry to acquire high-quality data with greater resolution enabled the analysis of protein and DNA adducts of xenobiotics including CWAs and place the rapidly advancing 'adductomics' next to the other "-omics" technologies. Adductomics can serve as a powerful bioanalytical tool for the verification of CWAs exposure. This review mostly describes the protein adducts for nerve agents and vesicants, outlines the procedures for measuring adducts, and suggests the evolving (or future) use of adducts in the detection and verification of CWAs.


Assuntos
Substâncias para a Guerra Química/toxicidade , Guerra Química , Adutos de DNA/química , Humanos , Programas de Rastreamento
8.
Neurotox Res ; 33(4): 738-748, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28929435

RESUMO

Neuroprotection from nerve agent such as soman-induced neural damage is a major challenge for existing drugs. Nerve agent exposure can cause many neural effects in survivors arising mainly due to acetylcholinesterase (AChE) inhibition or death within minutes. Unraveling the mechanisms underlying the nerve agent-induced multiple neurological effects is useful to develop better and safe drugs. The present study aimed to understand the molecular response during soman exposure and to evaluate the neuroprotective efficacy of galantamine on nerve agent-induced neurotoxic changes. mRNA expression studies using quantitative real-time PCR revealed significant changes in S-100ß, Gfap, c-fos, and Bdnf in the hippocampus and piriform cortex after soman (90 µg/kg, s.c) exposure. Immunoblot analysis showed acute soman exposure significantly increased the protein levels of neuroglial markers (S100-ß and GFAP); c-Fos and protein oxidation in discrete rat brain areas indicate their role in nerve agent-induced neurotoxicity. Induction of BDNF levels during soman exposure may indicate the recovery mechanisms activation. AChE was inhibited in the blood and brain up to 82% after soman exposure. Antidotal treatment with galantamine alone (3 mg/kg) and galantamine plus atropine (10 mg/kg) has protected animals from nerve agent-induced intoxication, death, and soman-inhibited AChE up to 45% in the blood and brain. Animal received galantamine displayed increased levels of neuroprotective genes (nAChRα-7, Bcl-2, and Bdnf) in the brain suggest the neuroprotective value of galantamine. Neuroglial changes, c-Fos, and protein oxidation levels significantly reduced after galantamine and galantamine plus atropine treatment indicate their potential antidotal value in nerve agent treatment.


Assuntos
Encéfalo , Galantamina/farmacologia , Agentes Neurotóxicos/farmacologia , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Soman/farmacologia , Acetilcolinesterase/metabolismo , Animais , Atropina/farmacologia , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Antagonistas Muscarínicos/farmacologia , Carbonilação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Tempo
9.
Viruses ; 6(6): 2416-27, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24956179

RESUMO

Bovine leukemia virus (BLV) and human T-lymphotropic virus type 1 (HTLV-1) are closely related d-retroviruses that induce hematological diseases. HTLV-1 infects about 15 million people worldwide, mainly in subtropical areas. HTLV-1 induces a wide spectrum of diseases (e.g., HTLV-associated myelopathy/tropical spastic paraparesis) and leukemia/lymphoma (adult T-cell leukemia). Bovine leukemia virus is a major pathogen of cattle, causing important economic losses due to a reduction in production, export limitations and lymphoma-associated death. In the absence of satisfactory treatment for these diseases and besides the prevention of transmission, the best option to reduce the prevalence of d-retroviruses is vaccination. Here, we provide an overview of the different vaccination strategies in the BLV model and outline key parameters required for vaccine efficacy.


Assuntos
Infecções por Deltaretrovirus/prevenção & controle , Deltaretrovirus/imunologia , Vacinação , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Deltaretrovirus/fisiologia , Infecções por Deltaretrovirus/virologia , Leucose Enzoótica Bovina/prevenção & controle , Leucose Enzoótica Bovina/virologia , Infecções por HTLV-I/prevenção & controle , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Vírus da Leucemia Bovina/imunologia , Vírus da Leucemia Bovina/fisiologia , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...