Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 249: 10055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774281

RESUMO

Currently, various functionalized nanocarrier systems are extensively studied for targeted delivery of drugs, peptides, and nucleic acids. Joining the approaches of genetic and chemical engineering may produce novel carriers for precise targeting different cellular proteins, which is important for both therapy and diagnosis of various pathologies. Here we present the novel nanocontainers based on vectorized genetically encoded Myxococcus xanthus (Mx) encapsulin, confining a fluorescent photoactivatable mCherry (PAmCherry) protein. The shells of such encapsulins were modified using chemical conjugation of human transferrin (Tf) prelabeled with a fluorescein-6 (FAM) maleimide acting as a vector. We demonstrate that the vectorized encapsulin specifically binds to transferrin receptors (TfRs) on the membranes of mesenchymal stromal/stem cells (MSCs) followed by internalization into cells. Two spectrally separated fluorescent signals from Tf-FAM and PAmCherry are clearly distinguishable and co-localized. It is shown that Tf-tagged Mx encapsulins are internalized by MSCs much more efficiently than by fibroblasts. It has been also found that unlabeled Tf effectively competes with the conjugated Mx-Tf-FAM formulations. That indicates the conjugate internalization into cells by Tf-TfR endocytosis pathway. The developed nanoplatform can be used as an alternative to conventional nanocarriers for targeted delivery of, e.g., genetic material to MSCs.


Assuntos
Células-Tronco Mesenquimais , Myxococcus xanthus , Transferrina , Células-Tronco Mesenquimais/metabolismo , Transferrina/metabolismo , Humanos , Myxococcus xanthus/metabolismo , Endocitose , Receptores da Transferrina/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética
2.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176126

RESUMO

The insulin-like growth factors IGF-I and IGF-II-as well as their binding proteins (IGFBPs), which regulate their bioavailability-are involved in many pathological and physiological processes in cardiac tissue. Pregnancy-associated plasma protein A (PAPP-A) is a metalloprotease that preferentially cleaves IGFBP-4, releasing IGF and activating its biological activity. Previous studies have shown that PAPP-A-specific IGFBP-4 proteolysis is involved in the pathogenesis of cardiovascular diseases, such as ischemia, heart failure, and acute coronary syndrome. However, it remains unclear whether PAPP-A-specific IGFBP-4 proteolysis participates in human normal cardiomyocytes. Here, we report PAPP-A-specific IGFBP-4 proteolysis occurring in human cardiomyocytes derived from two independent induced pluripotent cell lines (hiPSC-CMs), detected both on the cell surface and in the cell secretome. PAPP-A was measured by fluoroimmune analysis (FIA) in a conditioned medium of hiPSC-CMs and was detected in concentrations of up to 4.3 ± 1.33 ng/mL and 3.8 ± 1.1 ng/mL. The level of PAPP-A-specific IGFBP-4 proteolysis was determined as the concentration of NT-IGFBP-4 proteolytic fragments using FIA for a proteolytic neo-epitope-specific assay. We showed that PAPP-A-specific IGFBP-4 proteolysis is IGF-dependent and inhibited by EDTA and 1,10-phenanthroline. Therefore, it may be concluded that PAPP-A-specific IGFBP-4 proteolysis functions in human normal cardiomyocytes, and hiPSC-CMs contain membrane-bound and secreted forms of proteolytically active PAPP-A.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteína Plasmática A Associada à Gravidez , Humanos , Proteína Plasmática A Associada à Gravidez/metabolismo , Proteólise , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Miócitos Cardíacos/metabolismo
3.
Endocr Connect ; 11(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35148273

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is the most common cause of hereditary primary hyperparathyroidism (PHPT). Bone disorders are considered one of the key symptoms in PHPT present with the significant reduction in bone mineral density and low-energy fractures. Previously, these bone disorders were believed to be caused solely by the increase in the level of parathyroid hormone and its subsequent effect on bone resorption. The current paradigm, however, states that the mutations in the menin gene, which cause the development of MEN1, can also affect the metabolism of the cells of the osteoid lineage. This review analyzes both the proven and the potential intracellular mechanisms through which menin can affect bone metabolism.

4.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769484

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is a rare tumor syndrome that manifests differently among various patients. Despite the mutations in the MEN1 gene that commonly predispose tumor development, there are no obvious phenotype-genotype correlations. The existing animal and in vitro models do not allow for studies of the molecular genetics of the disease in a human-specific context. We aimed to create a new human cell-based model, which would consider the variability in genetic or environmental factors that cause the complexity of MEN1 syndrome. Here, we generated patient-specific induced pluripotent stem cell lines carrying the mutation c.1252G>T, D418Y in the MEN1 gene. To reduce the genetically determined variability of the existing cellular models, we created an isogenic cell system by modifying the target allele through CRISPR/Cas9 editing with great specificity and efficiency. The high potential of these cell lines to differentiate into the endodermal lineage in defined conditions ensures the next steps in the development of more specialized cells that are commonly affected in MEN1 patients, such as parathyroid or pancreatic islet cells. We anticipate that this isogenic system will be broadly useful to comprehensively study MEN1 gene function across different contexts, including in vitro modeling of MEN1 syndrome.


Assuntos
Fibroblastos/metabolismo , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neoplasia Endócrina Múltipla Tipo 1/patologia , Mutação , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Adulto , Sistemas CRISPR-Cas , Células Cultivadas , Feminino , Humanos , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Proteínas Proto-Oncogênicas/genética
5.
Aging (Albany NY) ; 13(16): 20050-20080, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34428743

RESUMO

BACKGROUND: Abisil is an extract of Siberian fir terpenes with antimicrobial and wound healing activities. Previous studies revealed that Abisil has geroprotective, anti-tumorigenic, and anti-angiogenic effects. Abisil decreased the expression of cyclin D1, E1, A2, and increased the phosphorylation rate of AMPK. OBJECTIVE: In the present study, we analyzed the effect of Abisil on autophagy, the mitochondrial potential of embryonic human lung fibroblasts. We evaluated its antioxidant activity and analyzed the transcriptomic and proteomic effects of Abisil treatment. RESULTS: Abisil treatment resulted in activation of autophagy, reversal of rotenone-induced elevation of reactive oxygen species (ROS) levels and several-fold decrease of mitochondrial potential. Lower doses of Abisil (25 µg/ml) showed a better oxidative effect than high doses (50 or 125 µg/ml). Estimation of metabolic changes after treatment with 50 µg/ml has not shown any changes in oxygen consumption rate, but extracellular acidification rate decreased significantly. Abisil treatment (5 and 50 µg/ml) of MRC5-SV40 cells induced a strong transcriptomic shift spanning several thousand genes (predominantly, expression decrease). Among down-regulated genes, we noticed an over-representation of genes involved in cell cycle progression, oxidative phosphorylation, and fatty acid biosynthesis. Additionally, we observed predominant downregulation of genes encoding for kinases. Proteome profiling also revealed that the content of hundreds of proteins is altered after Abisil treatment (mainly, decreased). These proteins were involved in cell cycle regulation, intracellular transport, RNA processing, translation, mitochondrial organization. CONCLUSIONS: Abisil demonstrated antioxidant and autophagy stimulating activity. Treatment with Abisil results in the predominant downregulation of genes involved in the cell cycle and oxidative phosphorylation.


Assuntos
Abies/química , Antioxidantes/metabolismo , Autofagia/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteoma/genética , Terpenos/farmacologia , Transcriptoma/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteoma/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo
6.
Stem Cell Res ; 47: 101929, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32739878

RESUMO

Insulin gene (INS) mutations prove to be the second most common cause of permanent neonatal diabetes. Here, we report the generation of iPSC line from a patient, heterozygous for the intronic INS mutation that presumably leads to aberrant splicing. Dermal fibroblasts were reprogrammed using non-integrating RNA-based vector. Derivation and expansion of iPSCs were performed under feeder-free culture conditions. The iPSC line expressed pluripotency markers, had normal karyotype, could differentiate into three germ layers in vitro and retained the disease mutation. This line can be a powerful tool for modeling of diabetes and cell replacement therapy as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...