Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 47(4): 588-595, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025031

RESUMO

The impact of climate change on soil organic C (SOC) stocks in no-till (NT) and conventionally tilled (CT) agricultural systems is poorly understood. The objective of this study was to simulate the impact of projected climate change on SOC to 50-cm soil depth for grain cropping systems in the southern Mid-Atlantic region of the United States. We used SOC and other data from the long-term Farming Systems Project in Beltsville, MD, and CQESTR, a process-based soil C model, to predict the impact of cropping systems and climate (air temperature and precipitation) on SOC for a 40-yr period (2012-2052). Since future crop yields are uncertain, we simulated five scenarios with differing yield levels (crop yields from 1996-2014, and at 10 or 30% greater or lesser than these yields). Without change in climate or crop yields (baseline conditions) CQESTR predicted an increase in SOC of 0.014 and 0.021 Mg ha yr in CT and NT, respectively. Predicted climate change alone resulted in an SOC increase of only 0.002 Mg ha yr in NT and a decrease of 0.017 Mg ha yr in CT. Crop yield declines of 10 and 30% led to SOC decreases between 2 and 8% compared with 2012 levels. Increasing crop yield by 10 and 30% was sufficient to raise SOC 2 and 7%, respectively, above the climate-only scenario under both CT and NT between 2012 and 2052. Results indicate that under these simulated conditions, the negative impact of climate change on SOC levels could be mitigated by crop yield increases.


Assuntos
Carbono , Mudança Climática , Produtos Agrícolas , Solo/química , Agricultura , Maryland
2.
J Environ Qual ; 47(4): 663-673, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025032

RESUMO

Intensive tillage, low-residue crops, and a warm, humid climate have contributed to soil organic carbon (SOC) loss in the southeastern Coastal Plains region. Conservation (CnT) tillage and winter cover cropping are current management practices to rebuild SOC; however, there is sparse long-term field data showing how these management practices perform under variable climate conditions. The objectives of this study were to use CQESTR, a process-based C model, to simulate SOC in the top 15 cm of a loamy sand soil (fine-loamy, kaolinitic, thermic Typic Kandiudult) under conventional (CvT) or CnT tillage to elucidate the impact of projected climate change and crop yields on SOC relative to management and recommend the best agriculture management to increase SOC. Conservation tillage was predicted to increase SOC by 0.10 to 0.64 Mg C ha for six of eight crop rotations compared with CvT by 2033. The addition of a winter crop [rye ( L.) or winter wheat ( L.)] to a corn ( L.)-cotton ( L.) or corn-soybean [ (L.) Merr.] rotation increased SOC by 1.47 to 2.55 Mg C ha. A continued increase in crop yields following historical trends could increase SOC by 0.28 Mg C ha, whereas climate change is unlikely to have a significant impact on SOC except in the corn-cotton or corn-soybean rotations where SOC decreased up to 0.15 Mg C ha by 2033. The adoption of CnT and cover crop management with high-residue-producing corn will likely increase SOC accretion in loamy sand soils. Simulation results indicate that soil C saturation may be reached in high-residue rotations, and increasing SOC deeper in the soil profile will be required for long-term SOC accretion beyond 2030.


Assuntos
Carbono , Mudança Climática , Solo/química , Agricultura , Monitoramento Ambiental
3.
J Environ Qual ; 47(4): 654-662, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025045

RESUMO

Understanding how agricultural management and climate change affect soil organic carbon (SOC) stocks is particularly important for dryland agriculture regions that have been losing SOC over time due to fallow and tillage practices, and it can lead to development of agricultural practice(s) that reduce the impact of climate change on crop production. The objectives of this study were: (i) to simulate SOC dynamics in the top 30 cm of soil during a 20-yr (1993-2012) field study using CQESTR, a process-based C model; (ii) to predict the impact of changes in management, crop production, and climate change from 2013 to 2032; and (iii) to identify the best dryland cropping systems to maintain or increase SOC stocks under projected climate change in central North Dakota. Intensifying crop rotations was predicted to have a greater impact on SOC stocks than tillage (minimum tillage [MT], no-till [NT]) during 2013 to 2032, as SOC was highly correlated to biomass input ( = 0.91, = 0.00053). Converting from a MT spring wheat (SW, L.)-fallow rotation to a NT continuous SW rotation increased annualized biomass additions by 2.77 Mg ha (82%) and SOC by 0.22 Mg C ha yr. Under the assumption that crop production will stay at the 1993 to 2012 average, climate change is predicted to have a minor impact on SOC (approximately -6.5%) relative to crop rotation management. The CQESTR model predicted that the addition of another SW or rye ( L.) crop would have a greater effect on SOC stocks (0- to 30-cm depth) than conversion from MT to NT or climate change from 2013 to 2032.


Assuntos
Carbono , Mudança Climática , Produção Agrícola , Solo/química , Agricultura , Produtos Agrícolas , North Dakota
4.
J Environ Qual ; 47(4): 674-683, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025061

RESUMO

Traditional dryland crop management includes fallow and intensive tillage, which have reduced soil organic carbon (SOC) over the past century, raising concerns regarding soil health and sustainability. The objectives of this study were: (i) to use CQESTR, a process-based C model, to simulate SOC dynamics from 2006 to 2011 and to predict relative SOC trends in cropping sequences that included barley ( L.), pea ( L.), and fallow under conventional tillage or no-till, and N fertilization rates through 2045; and (ii) to identify best dryland cropping systems to increase SOC and reduce CO emissions under projected climate change in eastern Montana. Cropping sequences were conventional-till barley-fallow (CTB-F), no-till barley-fallow (NTB-F), no-till continuous barley (NTCB), and no-till barley-pea (NTB-P), with 0 and 80 kg N ha applied to barley. Under current crop production, climatic conditions, and averaged N rates, SOC at the 0- to 10-cm depth was predicted to increase by 1.74, 1.79, 2.96, and 4.57 Mg C ha by 2045 for CTB-F, NTB-F, NTB-P, and NTCB, respectively. When projected climate change and the current positive US barley yield trend were accounted for in the simulations, SOC accretion was projected to increase by 0.69 to 0.92 Mg C ha and 0.41 to 0.47 Mg C ha, respectively. According to the model simulations, adoption of NT, elimination of fallow years, and N fertilizer management will likely have the greatest impact on SOC stocks in the top soil as of 2045 in the Northern Great Plains.


Assuntos
Carbono , Mudança Climática , Solo/química , Agricultura , Produtos Agrícolas
5.
J Environ Qual ; 42(4): 1274-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24216379

RESUMO

Difficulties in accessing high-quality data on trace gas fluxes and performance of bioenergy/bioproduct feedstocks limit the ability of researchers and others to address environmental impacts of agriculture and the potential to produce feedstocks. To address those needs, the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) and REAP (Renewable Energy Assessment Project) research programs were initiated by the USDA Agricultural Research Service (ARS). A major product of these programs is the creation of a database with greenhouse gas fluxes, soil carbon stocks, biomass yield, nutrient, and energy characteristics, and input data for modeling cropped and grazed systems. The data include site descriptors (e.g., weather, soil class, spatial attributes), experimental design (e.g., factors manipulated, measurements performed, plot layouts), management information (e.g., planting and harvesting schedules, fertilizer types and amounts, biomass harvested, grazing intensity), and measurements (e.g., soil C and N stocks, plant biomass amount and chemical composition). To promote standardization of data and ensure that experiments were fully described, sampling protocols and a spreadsheet-based data-entry template were developed. Data were first uploaded to a temporary database for checking and then were uploaded to the central database. A Web-accessible application allows for registered users to query and download data including measurement protocols. Separate portals have been provided for each project (GRACEnet and REAP) at nrrc.ars.usda.gov/slgracenet/#/Home and nrrc.ars.usda.gov/slreap/#/Home. The database architecture and data entry template have proven flexible and robust for describing a wide range of field experiments and thus appear suitable for other natural resource research projects.


Assuntos
Efeito Estufa , Solo , Agricultura , Carbono , Produtos Agrícolas , Fertilizantes , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...