Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immun Ageing ; 17: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042204

RESUMO

BACKGROUND: The immune system undergoes a myriad of changes with age. While it is known that antibody-secreting plasma and long-lived memory B cells change with age, it remains unclear how the binding profile of the circulating antibody repertoire is impacted. RESULTS: To understand humoral immunity changes with respect to age, we characterized serum antibody binding to high density peptide microarrays in a diverse cohort of 1675 donors. We discovered thousands of peptides that bind antibodies in age-dependent fashion, many of which contain di-serine motifs. Peptide binding profiles were aggregated into an "immune age" by a machine learning regression model that was highly correlated with chronological age. Applying this regression model to previously-unobserved donors, we found that a donor's predicted immune age is longitudinally consistent over years, suggesting it could be a robust long-term biomarker of humoral immune ageing. Finally, we assayed serum from donors with autoimmune disease and found a significant association between "accelerated immune ageing" and autoimmune disease activity. CONCLUSIONS: The circulating antibody repertoire has increased binding to thousands of di-serine peptide containing peptides in older donors, which can be represented as an immune age. Increased immune age is associated with autoimmune disease, acute inflammatory disease severity, and may be a broadly relevant biomarker of immune function in health, disease, and therapeutic intervention.

2.
ACS Med Chem Lett ; 9(1): 39-44, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29348809

RESUMO

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of mammalian energy homeostasis and has been implicated in mediating many of the beneficial effects of exercise and weight loss including lipid and glucose trafficking. As such, the enzyme has long been of interest as a target for the treatment of Type 2 Diabetes Mellitus. We describe the optimization of ß1-selective, liver-targeted AMPK activators and their evolution into systemic pan-activators capable of acutely lowering glucose in mouse models. Identifying surrogates for the key acid moiety in early generation compounds proved essential in improving ß2-activation and in balancing improvements in plasma unbound fraction while avoiding liver sequestration.

3.
J Med Chem ; 55(7): 2945-59, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22364528

RESUMO

The discovery of 1,3,8-triazaspiro[4.5]decane-2,4-diones (spirohydantoins) as a structural class of pan-inhibitors of the prolyl hydroxylase (PHD) family of enzymes for the treatment of anemia is described. The initial hit class, spirooxindoles, was identified through affinity selection mass spectrometry (AS-MS) and optimized for PHD2 inhibition and optimal PK/PD profile (short-acting PHDi inhibitors). 1,3,8-Triazaspiro[4.5]decane-2,4-diones (spirohydantoins) were optimized as an advanced lead class derived from the original spiroindole hit. A new set of general conditions for C-N coupling, developed using a high-throughput experimentation (HTE) technique, enabled a full SAR analysis of the spirohydantoins. This rapid and directed SAR exploration has resulted in the first reported examples of hydantoin derivatives with good PK in preclinical species. Potassium channel off-target activity (hERG) was successfully eliminated through the systematic introduction of acidic functionality to the molecular structure. Undesired upregulation of alanine aminotransferese (ALT) liver enzymes was mitigated and a robust on-/off-target margin was achieved. Spirohydantoins represent a class of highly efficacious, short-acting PHD1-3 inhibitors causing a robust erythropoietin (EPO) upregulation in vivo in multiple preclinical species. This profile deems spirohydantoins as attractive short-acting PHDi inhibitors with the potential for treatment of anemia.


Assuntos
Anemia/tratamento farmacológico , Compostos Aza/síntese química , Hidantoínas/síntese química , Fator 1 Induzível por Hipóxia/metabolismo , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Compostos de Espiro/síntese química , Animais , Compostos Aza/farmacocinética , Compostos Aza/farmacologia , Cães , Canal de Potássio ERG1 , Eritropoetina/biossíntese , Canais de Potássio Éter-A-Go-Go/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Hidantoínas/farmacocinética , Hidantoínas/farmacologia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Indóis/síntese química , Indóis/farmacocinética , Indóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Macaca mulatta , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Ratos , Compostos de Espiro/farmacocinética , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...