Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 5: 151, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795738

RESUMO

Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF, and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose non-fermenting 1-related protein kinase 2 and mitogen-activated protein kinase pathways contribute to initiation of stress adaptive downstream responses and promote plant growth and development. As a convergent point of multiple abiotic cues, cellular effects of environmental stresses are not only imbalances of ionic and osmotic homeostasis but also impaired photosynthesis, cellular energy depletion, and redox imbalances. Recent evidence of regulatory systems that link sensing and signaling of environmental conditions and the intracellular redox status have shed light on interfaces of stress and energy signaling. ROS (reactive oxygen species) cause severe cellular damage by peroxidation and de-esterification of membrane-lipids, however, current models also define a pivotal signaling function of ROS in triggering tolerance against stress. Recent research advances suggest and support a regulatory role of ROS in the cross talks of stress triggered hormonal signaling such as the abscisic acid pathway and endogenously induced redox and metabolite signals. Here, we discuss and review the versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid-derived signals and the specific role of stomatal signaling.

2.
Plant Cell Rep ; 32(7): 1007-16, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23525744

RESUMO

Plants adapt to adverse environments by integrating growth and development to environmentally activated cues. Within the adaptive signaling networks, plant hormones tightly control convergent developmental and stress adaptive processes and coordinate cellular responses to external and internal conditions. Recent studies have uncovered novel antagonizing roles of the plant hormones gibberellin (GA) and abscisic acid (ABA) in integrating growth and development in plants with environmental signaling. According to current concepts, GRAS transcription factors of the DELLA and SCARECROW-LIKE (SCL) types have a key role as major growth regulators and have pivotal functions in modulating GA signaling. Significantly, current models emphasize a function of DELLA proteins as central regulators in GA homeostasis. DELLA proteins interact with the cellular GA receptor GID1 (GA-INSENSITIVE DWARF1) and degradation of DELLAs activates the function of GA. Supplementary to the prevailing view of a pivotal role of GRAS family transcriptional factors in plant growth regulation, recent work has suggested that the DELLA and SCL proteins integrate generic GA responses into ABA-controlled abiotic stress tolerance. Here, we review and discuss how GRAS type proteins influence plant development and versatile adaptation as hubs in GA and ABA triggered signaling pathways.


Assuntos
Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
3.
Plant Cell Rep ; 30(8): 1383-91, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21476089

RESUMO

Understanding the responses of plants to the major environmental stressors drought and salt is an important topic for the biotechnological application of functional mechanisms of stress adaptation. Here, we review recent discoveries on regulatory systems that link sensing and signaling of these environmental cues focusing on the integrative function of transcription activators. Key components that control and modulate stress adaptive pathways include transcription factors (TFs) ranging from bZIP, AP2/ERF, and MYB proteins to general TFs. Recent studies indicate that molecular dynamics as specific homodimerizations and heterodimerizations as well as modular flexibility and posttranslational modifications determine the functional specificity of TFs in environmental adaptation. Function of central regulators as NAC, WRKY, and zinc finger proteins may be modulated by mechanisms as small RNA (miRNA)-mediated posttranscriptional silencing and reactive oxygen species signaling. In addition to the key function of hub factors of stress tolerance within hierarchical regulatory networks, epigenetic processes as DNA methylation and posttranslational modifications of histones highly influence the efficiency of stress-induced gene expression. Comprehensive elucidation of dynamic coordination of drought and salt responsive TFs in interacting pathways and their specific integration in the cellular network of stress adaptation will provide new opportunities for the engineering of plant tolerance to these environmental stressors.


Assuntos
Secas , Redes Reguladoras de Genes , Plantas Tolerantes a Sal/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Adaptação Fisiológica , Epigênese Genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas de Plantas/genética , Interferência de RNA , Salinidade
4.
Plant Cell Physiol ; 52(5): 946-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21474463

RESUMO

The plant vacuolar H(+)-ATPase takes part in acidifying compartments of the endomembrane system including the secretory pathway and the vacuoles. The structural variability of the V-ATPase complex as well as its presence in different compartments and tissues involves multiple isoforms of V-ATPase subunits. Furthermore, a versatile regulation is essential to allow for organelle- and tissue-specific fine tuning. In this study, results from V-ATPase complex disassembly with a chaotropic reagent, immunodetection and in vivo fluorescence resonance energy transfer (FRET) analyses point to a regulatory mechanism in plants, which depends on energization and involves the stability of the peripheral stalks as well. Lowering of cellular ATP by feeding 2-deoxyglucose resulted in structural alterations within the V-ATPase, as monitored by changes in FRET efficiency between subunits VHA-E and VHA-C. Potassium iodide-mediated disassembly revealed a reduced stability of V-ATPase after 2-deoxyglucose treatment of the cells, but neither the complete V(1)-sector nor VHA-C was released from the membrane in response to 2-deoxyglucose treatment, precluding a reversible dissociation mechanism like in yeast. These data suggest the existence of a regulatory mechanism of plant V-ATPase by modification of the peripheral stator structure that is linked to the cellular energization state. This mechanism is distinct from reversible dissociation as reported for the yeast V-ATPase, but might represent an evolutionary precursor of reversible dissociation.


Assuntos
Ácidos/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Metabolismo Energético , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/enzimologia , Trifosfato de Adenosina/metabolismo , Arabidopsis/efeitos dos fármacos , Desoxiglucose/farmacologia , Metabolismo Energético/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Isoenzimas/metabolismo , Células do Mesofilo/citologia , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Multimerização Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
6.
Plant Cell Environ ; 32(12): 1761-77, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19682291

RESUMO

It is not known how the uptake and retention of the key osmolyte K(+) in cells are mediated in growing leaf tissue. In the present study on the growing leaf 3 of barley, we have cloned the full-length coding sequence of three genes which encode putative K(+) channels (HvAKT1, HvAKT2, HvKCO1/HvTPK1), and of one gene which encodes a putative K(+) transporter (HvHAK4). The functionality of the gene products of HvAKT1 and HvAKT2 was tested through expression in Xenopus laevis oocytes. Both are inward-rectifying K(+) channels which are inhibited by Cs(+). Function of HvAKT1 in oocytes requires co-expression of a calcineurin-interacting protein kinase (AtCIPK23) and a calcineurin B-like protein (AtCBL9) from Arabidopsis, showing cross-species complementation of function. In planta, HvAKT1 is expressed primarily in roots, but is also expressed in leaf tissue. HvAKT2 is expressed particularly in leaf tissue, and HvHAK4 is expressed particularly in growing leaf tissue. Within leaves, HvAKT1 and HvAKT2 are expressed predominantly in mesophyll. Expression of genes changes little in response to low external K(+) or salinity, despite major changes in K(+) concentrations and osmolality of cells. Possible contributions of HvAKT1, HvAKT2, HvKCO1 and HvHAK4 to regulation of K(+) relations of growing barley leaf cells are discussed.


Assuntos
Hordeum/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Canais de Potássio/metabolismo , Animais , Arabidopsis/genética , Clonagem Molecular , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Hordeum/crescimento & desenvolvimento , Oócitos/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , Canais de Potássio/genética , Estresse Fisiológico , Xenopus laevis
7.
Gene ; 436(1-2): 45-55, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19248824

RESUMO

Soil salinity severely affects plant growth and agricultural productivity. AtbZIP24 encodes a bZIP transcription factor that is induced by salt stress in Arabidopsis thaliana but suppressed in the salt-tolerant relative Lobularia maritima. Transcriptional repression of AtbZIP24 using RNA interference improved salt tolerance in A. thaliana. Under non-stress growth conditions, transgenic A. thaliana lines with decreased AtbZIP24 expression activated the expression of stress-inducible genes involved in cytoplasmic ion homeostasis and osmotic adjustment: the Na(+) transporter AtHKT1, the Na(+)/H(+) antiporter AtSOS1, the aquaporin AtPIP2.1, and a glutamine synthetase. In addition, candidate target genes of AtbZIP24 with functions in plant growth and development were identified such as an argonaute (AGO1)-related protein and cyclophilin AtCYP19. The salt tolerance in transgenic plants correlated with reduced Na(+) accumulation in leaves. In vivo interaction of AtbZIP24 as a homodimer was shown using fluorescence energy transfer (FRET) with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as fused FRET pairs. Translational fusion of AtbZIP24 with GFP showed subcellular localization of the protein in nucleus and cytoplasm in plants grown under control conditions whereas in response to salt stress AtbZIP24 was preferentially targeted to the nucleus. It is concluded that AtbZIP24 is an important regulator of salt stress response in plants. The modification of transcriptional control by regulatory transcription factors provides a useful strategy for improving salt tolerance in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Adaptação Fisiológica , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dimerização , Transferência Ressonante de Energia de Fluorescência/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Pressão Osmótica , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/farmacologia
8.
J Plant Physiol ; 166(7): 697-711, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19106017

RESUMO

We report an analysis of salt-stress responses in the monocotyledonous halophyte Festuca rubra ssp. litoralis. Salt-dependent expression of transcripts encoding a PIP2;1 aquaporin, V-ATPase subunit B, and the Na+/H+ antiporter NHX was characterized. Transcription of FrPIP2;1, FrVHA-B, and FrNHX1 was induced in root tissue of F. rubra ssp. litoralis by salt treatment, and during salt-stress F. rubra ssp. litoralis accumulated sodium in leaves and roots. Cell specificity of FrPIP2;1, FrVHA-B, and FrNHX1 transcription was analyzed by in situ PCR in roots of F. rubra ssp. litoralis. Expression of the genes was localized to the root epidermis, cortex cells, endodermis, and the vascular tissue. In plants treated with 500 mM NaCl, transcripts were repressed in the epidermis and the outer cortex cells, whereas endodermis and vasculature showed strong signals. These data demonstrate that transcriptional regulation of the aquaporin PIP2;1, V-ATPase, and the Na+/H+ antiporter NHX is correlated with salt tolerance in F. rubra ssp. litoralis and suggests coordinated control of ion homeostasis and water status at high salinity in plants. Salt-induced transcript accumulation in F. rubra ssp. litoralis was further monitored by cDNA-arrays with expressed sequence tags derived from a cDNA subtraction library. The salt-regulated transcripts included those involved in the control of gene expression and signal transduction elements such as a serine/threonine protein kinase, an SNF1-related protein kinase, and a WRKY-type transcription factor. Other ESTs with salt-dependent regulation included transcripts encoding proteins that function in metabolism, general stress responses, and defense and transport proteins.


Assuntos
Aclimatação/efeitos dos fármacos , Festuca/genética , Festuca/fisiologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Aclimatação/genética , Aquaporinas/metabolismo , Sequência de Bases , Northern Blotting , Análise por Conglomerados , Festuca/efeitos dos fármacos , Festuca/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hidroponia , Íons , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/efeitos dos fármacos , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Homologia de Sequência de Aminoácidos
9.
Gene ; 423(2): 142-8, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18703123

RESUMO

Salt stress is an environmental factor that severely impairs plant growth and productivity. Salinity-induced transcript accumulation was monitored in the salt-sensitive Arabidopsis thaliana and the related salt-tolerant Lobularia maritima using cDNA-arrays with expressed sequence tags derived from a cDNA subtraction library of salt-stressed L. maritima. The expression profiles revealed differences of the steady state transcript regulation in A. thaliana and L. maritima in response to salt stress. The differentially expressed transcripts include those involved in the control of gene expression as a transcription factor II homologue as well as signal transduction elements such as a serine/threonine protein kinase, a SNF1-related protein kinase AKIN10 homologue, and protein phosphatase 2C. Other ESTs with differential regulation patterns included transcripts encoding proteins with function in general stress responses and defense and included a peroxidase, dehydrins, enzymes of lipid and nitrogen metabolism, and functionally unclassified proteins. In a more detailed analysis the basic leucine zipper transcription factor AtbZIP24 showed differential transcript abundance in A. thaliana and L. maritima in response to salt stress. Transgenic AtbZIP24-RNAi lines showed improved growth and development under salt stress that was correlated with changed Cl(-) accumulation. The data indicate that AtbZIP24 functions as a transcriptional repressor in salt-stressed A. thaliana that negatively regulates growth and development under salinity in context of controlling Cl(-) homeostasis. Monitoring the differential and tissue specific global regulation of gene expression during adaptation to salinity in salt-sensitive and halotolerant plants is a promising and powerful approach to identify novel elements of plant salt stress adaptation.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/genética , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Cloreto de Sódio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/fisiologia , Cloretos/metabolismo , Análise por Conglomerados , Homeostase/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
10.
BMC Cell Biol ; 9: 28, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18507826

RESUMO

BACKGROUND: The V-ATPase (VHA) is a protein complex of 13 different VHA-subunits. It functions as an ATP driven rotary-motor that electrogenically translocates H+ into endomembrane compartments. In Arabidopsis thaliana V-ATPase is encoded by 23 genes posing the question of specific versus redundant function of multigene encoded isoforms. RESULTS: The transmembrane topology and stoichiometry of the proteolipid VHA-c" as well as the stoichiometry of the membrane integral subunit VHA-e within the V-ATPase complex were investigated by in vivo fluorescence resonance energy transfer (FRET). VHA-c", VHA-e1 and VHA-e2, VHA-a, VHA-c3, truncated variants of VHA-c3 and a chimeric VHA-c/VHA-c" hybrid were fused to cyan (CFP) and yellow fluorescent protein (YFP), respectively. The constructs were employed for transfection experiments with Arabidopsis thaliana mesophyll protoplasts. Subcellular localization and FRET analysis by confocal laser scanning microscopy (CLSM) demonstrated that (i.) the N- and C-termini of VHA-c" are localised in the vacuolar lumen, (ii.) one copy of VHA-c" is present within the VHA-complex, and (iii.) VHA-c" is localised at the ER and associated Golgi bodies. (iv.) A similar localisation was observed for VHA-e2, whereas (v.) the subcellular localisation of VHA-e1 indicated the trans Golgi network (TGN)-specifity of this subunit. CONCLUSION: The plant proteolipid ring is a highly flexible protein subcomplex, tolerating the incorporation of truncated and hybrid proteolipid subunits, respectively. Whereas the membrane integral subunit VHA-e is present in two copies within the complex, the proteolipid subunit VHA-c" takes part in complex formation with only one copy. However, neither VHA-c" isoform 1 nor any of the two VHA-e isoforms were identified at the tonoplast. This suggest a function in endomembrane specific VHA-assembly or targeting rather than proton transport.


Assuntos
Arabidopsis/enzimologia , Organelas/enzimologia , ATPases Vacuolares Próton-Translocadoras , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/genética , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Organelas/ultraestrutura , Engenharia de Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Protoplastos/citologia , Protoplastos/enzimologia , Protoplastos/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , ATPases Vacuolares Próton-Translocadoras/biossíntese , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
11.
BMC Plant Biol ; 8: 49, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18442365

RESUMO

BACKGROUND: Plants respond to extracellularly perceived abiotic stresses such as low temperature, drought, and salinity by activation of complex intracellular signaling cascades that regulate acclimatory biochemical and physiological changes. Protein kinases are major signal transduction factors that have a central role in mediating acclimation to environmental changes in eukaryotic organisms. In this study, we characterized the function of the sucrose nonfermenting 1-related protein kinase2 (SnRK2) SAPK4 in the salt stress response of rice. RESULTS: Translational fusion of SAPK4 with the green fluorescent protein (GFP) showed subcellular localization in cytoplasm and nucleus. To examine the role of SAPK4 in salt tolerance we generated transgenic rice plants with over-expression of rice SAPK4 under control of the CaMV-35S promoter. Induced expression of SAPK4 resulted in improved germination, growth and development under salt stress both in seedlings and mature plants. In response to salt stress, the SAPK4-overexpressing rice accumulated less Na+ and Cl- and showed improved photosynthesis. SAPK4-regulated genes with functions in ion homeostasis and oxidative stress response were identified: the vacuolar H+-ATPase, the Na+/H+ antiporter NHX1, the Cl- channel OsCLC1 and a catalase. CONCLUSION: Our results show that SAPK4 regulates ion homeostasis and growth and development under salinity and suggest function of SAPK4 as a regulatory factor in plant salt stress acclimation. Identification of signaling elements involved in stress adaptation in plants presents a powerful approach to identify transcriptional activators of adaptive mechanisms to environmental changes that have the potential to improve tolerance in crop plants.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Oryza/enzimologia , Oryza/genética , Proteínas Serina-Treonina Quinases/metabolismo , Cloreto de Sódio/farmacologia , Festuca/efeitos dos fármacos , Festuca/enzimologia , Festuca/genética , Genes de Plantas , Germinação/efeitos dos fármacos , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia
12.
Mol Membr Biol ; 24(5-6): 507-18, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17710654

RESUMO

The presence of isogenes encoding V-ATPase subunits seems to be a characteristic for plants. Twenty-eight genes encode for the 13 different subunits in Arabidopsis thaliana, 23 genes each are known in tomato (Solanum lycopersicum) and can be identified in rice (Oryza sativa), respectively. In Arabidopsis the four subunits VHA-B, -E, -G and -a are encoded by three isogenes each. The transcript levels of these subunits were analysed by in silico evaluation of transcript pattern derived from the NASC-array database and exemplarily confirmed by semiquantitative RT-PCR. A tissue specifity was observed for the isoforms of VHA-E and VHA-G, whereas expression of VHA-a isoforms appeared independent of the tissue. Inflicting environmental stresses upon plants resulted in differentiated expression patterns of VHA-isoforms. Whereas salinity had minor effect on the expression of V-ATPase genes in A. thaliana, heat and drought stress led to alterations in transcript amount and preference of isoforms. Correlation analysis identified two clusters of isoforms, which were co-regulated on the transcript level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Transcrição Gênica , ATPases Vacuolares Próton-Translocadoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Western Blotting , Eletroforese em Gel Bidimensional , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/isolamento & purificação
13.
Plant Cell Physiol ; 48(8): 1132-47, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17602190

RESUMO

The aim of the present study was to identify water channel(s) which are expressed specifically in the growth zone of grass leaves and may facilitate growth-associated water uptake into cells. Previously, a gene had been described (HvEmip) which encodes a membrane intrinsic protein (MIP) and which is particularly expressed in the base 1 cm of barley primary leaves. The functionality of the encoding protein was not known. In the present study on leaf 3 of barley (Hordeum vulgare L.), a clone was isolated, termed HvPIP1;6, which has 99% amino acid sequence identity to HvEmip and belongs to the family of plasma membrane intrinsic proteins (PIPs). Expression of HvPIP1;6 was highest in the elongation zone, where it accounted for >85% of expression of known barley PIP1s. Within the elongation zone, faster grower regions showed higher expression than slower growing regions. Expression of HvPIP1;6 was confined to the epidermis, with some expression in neighboring mesophyll cells. Expression of HvPIP1;6 in Xenopus laevis oocytes increased osmotic water permeability 4- to 6-fold. Water channel activity was inhibited by pre-incubation of oocytes with 50 microM HgCl(2) and increased following incubation with the phosphatase inhibitor okadaic acid or the plant hormone ABA. Plasma membrane preparations were analyzed by Western blots using an antibody that recognized PIP1s. Levels of PIP1s were highest in the elongation and adjacent non-elongation zone. The developmental expression profile of HvPIP2;1, the only known barley water channel belonging to the PIP2 subgroup, was opposite to that of HvPIP1;6.


Assuntos
Aquaporinas/metabolismo , Membrana Celular/metabolismo , Hordeum/metabolismo , Sequência de Aminoácidos , Aquaporinas/genética , Aquaporinas/fisiologia , Northern Blotting , Western Blotting , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
14.
J Plant Physiol ; 164(10): 1278-88, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17166622

RESUMO

Lobularia maritima (Brassicaceae) is a facultative halophyte related to Arabidopsis thaliana and may be a suitable model to identify molecular mechanisms that regulate tolerance to salt stress in plants. Under the same salt stress conditions, the accumulation of sodium was similar in shoots and roots of Lobularia maritima and Arabidopsis thaliana, whereas the sodium to potassium ratio was less in Lobularia maritima. Aquaporins, the NHX-type Na(+)/H(+) antiporter, and the vacuolar ATPase are well established targets of regulation under salt stress that have a central role in the control of water status and cytoplasmic sodium homeostasis. Therefore, salt-dependent expression of transcripts encoding a PIP2;1 aquaporin, the Na(+)/H(+) antiporter NHX, and V-ATPase subunit E (VHA-E) was characterized in Lobularia maritima. Transcription of LmPIP2;1 was repressed in leaves and roots by treatment with 500mM NaCl. In contrast, salt stress stimulated the expression of LmNHX1 and LmVHA-E. Cell-specificity of the transcription of LmNHX1 was analyzed by fluorescence in situ PCR in leaf cross sections of Lobularia maritima. Expression of the gene was localized to the phloem and to mesophyll cells. In plants treated with 500 mM NaCl, transcription of LmNHX1 was stimulated in the mesophyll. The findings indicate divergent transcriptional responses of key mechanisms of salt adaptation in Lobularia maritima and suggest distinct regulation of sodium homeostasis and water flux under salt stress.


Assuntos
Adaptação Fisiológica , Brassicaceae/efeitos dos fármacos , Brassicaceae/enzimologia , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Clonagem Molecular , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Potássio/metabolismo , Sódio/metabolismo
15.
J Exp Bot ; 57(15): 4257-68, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17088362

RESUMO

Under NaCl-dominated salt stress, the key to plant survival is maintaining a low cytosolic Na(+) level or Na(+)/K(+) ratio. The OsHKT1, OsHKT2, and OsVHA transporter genes might play important roles in maintaining cytosolic Na(+) homeostasis in rice (Oryza sativa L. indica cvs Pokkali and BRRI Dhan29). Upon NaCl stress, the OsHKT1 transcript was significantly down-regulated in salt-tolerant cv. Pokkali, but not in salt-sensitive cv. BRRI Dhan29. NaCl stress induced the expression of OsHKT2 and OsVHA in both Pokkali and BRRI Dhan29. In cv. Pokkali, OsHKT2 and OsVHA transcripts were induced immediately after NaCl stress. However, in cv. BRRI Dhan29, the induction of OsHKT2 was quite low and of OsVHA was low and delayed, compared with that in cv. Pokkali. OsHKT2 and OsVHA induction mostly occurred in the phloem, in the transition from phloem to mesophyll cells, and in the mesophyll cells of the leaves. The vacuolar area in cv. Pokkali did not change under either short- (5-10 min) or long-term (24 h) salt stress, although it significantly increased 24 h after the stress in cv. BRRI Dhan29. When expressional constructs of VHA-c and VHA-a with YFP and CFP were introduced into isolated protoplasts of cvs Pokkali and BRRI Dhan29, the fluorescence resonance energy transfer (FRET) efficiency between VHA-c and VHA-a upon salt stress decreased slightly in cv. Pokkali, but increased significantly in cv. BRRI Dhan29. The results suggest that the salt-tolerant cv. Pokkali regulates the expression of OsHKT1, OsHKT2, and OsVHA differently from how the salt-sensitive cv. BRRI Dhan29 does. Together, these proteins might confer salt tolerance in Pokkali by maintaining a low cytosolic Na(+) level and a correct ratio of cytosolic Na(+)/K(+).


Assuntos
Proteínas de Transporte de Cátions/genética , Oryza/genética , Proteínas de Plantas/genética , Cloreto de Sódio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Regulação da Expressão Gênica de Plantas , Homeostase/genética , Modelos Biológicos , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacúolos/metabolismo , Vacúolos/ultraestrutura
16.
FEBS Lett ; 579(20): 4374-82, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16061227

RESUMO

The plant V-ATPase is a protein complex of 13 different VHA-subunits and functions as ATP driven motor that electrogenically translocates H+ into endomembrane compartments. The central rotor extends into the hexameric head that is fixed by peripheral stators to an eccentric membrane domain. The localization and orientation of VHA-subunits of the head and peripheral stalk region were investigated by in vivo fluorescence resonance energy transfer (FRET). To this end, VHA-E, VHA-G, VHA-H of the peripheral stalks as well as subunits VHA-A and VHA-B were C-terminally fused to cyan (CFP) and yellow fluorescent protein (YFP). Protoplasts transfected with FRET-pairs of CFP-donor and YFP-acceptor fluorophores fused to VHA-subunits were analysed for FRET by laser scanning microscopy. The result of the C-termini mapping allows to refine the arrangement and interaction of the subunits within the V-ATPase complex in vivo. Furthermore, expression of fused VHA-E and VHA-H stimulated acidification of protoplast vacuoles, while other constructs had no major effect on vacuolar pH tentatively indicating a regulatory role of these subunits in plants.


Assuntos
Arabidopsis/enzimologia , Protoplastos/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Protoplastos/química , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/enzimologia
17.
J Biotechnol ; 112(1-2): 165-75, 2004 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15288951

RESUMO

The proton-translocating plant vacuolar H(+)-ATPase (VHA) is of prime importance for acidification of intracellular compartments and is essential for processes such as secondary activated transport, maintenance of ion homeostasis, and adaptation to environmental stress. Twelve genes have been identified that encode subunits of the functional V-ATPase complex. In this study, subunits c and a of the V-ATPase from the plant Mesembryanthemum crystallinum were fused to cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP), respectively, and were transiently coexpressed in protoplasts. Two-colour scanning confocal fluorescence microscopy demonstrates that the fusion proteins VHA-c-CFP and VHA-a-YFP are colocalized at the tonoplast, the plasmamembrane, and at endoplasmic membrane structures indicating expression in cytoplasmic vesicles. Furthermore, fluorescence resonance energy transfer (FRET) was used to visualize the interaction of VHA-c and VHA-a in vivo on the nanometer length scale. Excitation of CFP as donor fluorophore caused increased emission of YFP-fluorescence in protoplasts due to FRET. Our results give strong evidence for physical interaction of subunits c and a in living plant cells.


Assuntos
Arabidopsis/enzimologia , Transferência Ressonante de Energia de Fluorescência/métodos , Mesembryanthemum/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Protoplastos/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Mesembryanthemum/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/genética , Proteínas Recombinantes de Fusão/metabolismo
18.
BMC Cell Biol ; 5: 29, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15310389

RESUMO

BACKGROUND: Vacuolar H+-ATPases are large protein complexes of more than 700 kDa that acidify endomembrane compartments and are part of the secretory system of eukaryotic cells. They are built from 14 different (VHA)-subunits. The paper addresses the question of sub-cellular localisation and subunit composition of plant V-ATPase in vivo and in vitro mainly by using colocalization and fluorescence resonance energy transfer techniques (FRET). Focus is placed on the examination and function of the 95 kDa membrane spanning subunit VHA-a. Showing similarities to the already described Vph1 and Stv1 vacuolar ATPase subunits from yeast, VHA-a revealed a bipartite structure with (i) a less conserved cytoplasmically orientated N-terminus and (ii) a membrane-spanning C-terminus with a higher extent of conservation including all amino acids shown to be essential for proton translocation in the yeast. On the basis of sequence data VHA-a appears to be an essential structural and functional element of V-ATPase, although previously a sole function in assembly has been proposed. RESULTS: To elucidate the presence and function of VHA-a in the plant complex, three approaches were undertaken: (i) co-immunoprecipitation with antibodies directed to epitopes in the N- and C-terminal part of VHA-a, respectively, (ii) immunocytochemistry approach including co-localisation studies with known plant endomembrane markers, and (iii) in vivo-FRET between subunits fused to variants of green fluorescence protein (CFP, YFP) in transfected cells. CONCLUSIONS: All three sets of results show that V-ATPase contains VHA-a protein that interacts in a specific manner with other subunits. The genomes of plants encode three genes of the 95 kDa subunit (VHA-a) of the vacuolar type H+-ATPase. Immuno-localisation of VHA-a shows that the recognized subunit is exclusively located on the endoplasmic reticulum. This result is in agreement with the hypothesis that the different isoforms of VHA-a may localize on distinct endomembrane compartments, as it was shown for its yeast counterpart Vph1.


Assuntos
Caryophyllaceae/citologia , Proteínas de Plantas/análise , Frações Subcelulares/enzimologia , ATPases Vacuolares Próton-Translocadoras/análise , Sequência de Aminoácidos , Arabidopsis , Caryophyllaceae/enzimologia , Caryophyllaceae/genética , DNA Complementar/genética , Retículo Endoplasmático/enzimologia , Epitopos/análise , Transferência Ressonante de Energia de Fluorescência , Imuno-Histoquímica , Proteínas de Membrana/análise , Dados de Sequência Molecular , Cebolas/citologia , Folhas de Planta/citologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Reação em Cadeia da Polimerase , Isoformas de Proteínas/análise , Estrutura Terciária de Proteína , Subunidades Proteicas , Protoplastos , Proteínas Recombinantes de Fusão/análise , Saccharomyces cerevisiae , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/imunologia , Zea mays/citologia , Zea mays/enzimologia
19.
J Bioenerg Biomembr ; 35(4): 377-88, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14635783

RESUMO

Plant cells are characterized by a highly active secretory system that includes the large central vacuole found in most differentiated tissues. The plant vacuolar H+-ATPase plays an essential role in maintaining the ionic and metabolic gradients across endomembranes, in activating transport processes and vesicle dynamics, and, hence, is indispensable for plant growth, development, and adaptation to changing environmental conditions. The review summarizes recent advances in elucidating the structure, subunit composition, localization, and regulation of plant V-ATPase. Emerging knowledge on subunit isogenes from Arabidopsis and rice genomic sequences as well as from Mesembryanthemum illustrates another level of complexity, the regulation of isogene expression and function of subunit isoforms. To this end, the review attempts to define directions of future research on plant V-ATPase.


Assuntos
Proteínas de Plantas/química , ATPases Vacuolares Próton-Translocadoras/química , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Proteínas de Plantas/genética , Subunidades Proteicas/síntese química , Subunidades Proteicas/genética , ATPases Vacuolares Próton-Translocadoras/genética
20.
Plant Mol Biol ; 52(5): 967-80, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14558658

RESUMO

From the ice plant, Mesembryanthemum crystallinum, McHKT1 was isolated encoding a protein 41-61% identical to other plant HKT1-like sequences previously described as potassium or sodium/potassium transporters. McHKT1 acts as a potassium transporter in yeast with specificity similar to that of wheat HKT1. In Xenopus oocytes it transports cations with a specificity Rb+ > Cs+ > [K+ = Na+ = Li+]. McHKT1 is exclusively localized to the plasma membrane. The isoform isolated is most highly expressed in leaves and is present in stems, flowers and seed pods but absent from the root where, according to immunological data, a second isoform exists which does not cross-hybridize with the leaf form in RNA blots at high stringency. McHKT1 transcript amounts increase during the first 6-10 h of stress and then decline to pre-stress levels with kinetics reminiscent of the initial influx of sodium into this halophyte. Immunocytological localization showed strong signals in the leaf vasculature and surrounding mesophyll cells but low-intensity signals are also detected in other cell types. In roots, McHKT is mainly confined to endodermis and stele. Possible functions of McHKT1 in ion homeostasis in the halophytic ice plant are discussed.


Assuntos
Proteínas de Transporte de Cátions/genética , Mesembryanthemum/genética , Simportadores/genética , Sequência de Aminoácidos , Animais , Transporte Biológico , Northern Blotting , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , DNA Complementar/química , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/genética , Potássio/metabolismo , Isoformas de Proteínas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Simportadores/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...