Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 23(6): 2365-2374, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30703050

RESUMO

OBJECTIVE: Systolic time intervals, such as the pre-ejection period (PEP), are important parameters for assessing cardiac contractility that can be measured non-invasively using seismocardiography (SCG). Recent studies have shown that specific points on accelerometer- and gyroscope-based SCG signals can be used for PEP estimation. However, the complex morphology and inter-subject variation of the SCG signal can make this assumption very challenging and increase the root mean squared error (RMSE) when these techniques are used to develop a global model. METHODS: In this study, we compared gyroscope- and accelerometer-based SCG signals, individually and in combination, for estimating PEP to show the efficacy of these sensors in capturing valuable information regarding cardiovascular health. We extracted general time-domain features from all the axes of these sensors and developed global models using various regression techniques. RESULTS: In single-axis comparison of gyroscope and accelerometer, angular velocity signal around head to foot axis from the gyroscope provided the lowest RMSE of 12.63 ± 0.49 ms across all subjects. The best estimate of PEP, with a RMSE of 11.46 ± 0.32 ms across all subjects, was achieved by combining features from the gyroscope and accelerometer. Our global model showed 30% lower RMSE when compared to algorithms used in recent literature. CONCLUSION: Gyroscopes can provide better PEP estimation compared to accelerometers located on the mid-sternum. Global PEP estimation models can be improved by combining general time domain features from both sensors. SIGNIFICANCE: This work can be used to develop a low-cost wearable heart-monitoring device and to generate a universal estimation model for systolic time intervals using a single- or multiple-sensor fusion.


Assuntos
Acelerometria/instrumentação , Testes de Função Cardíaca , Processamento de Sinais Assistido por Computador/instrumentação , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Feminino , Coração/fisiologia , Testes de Função Cardíaca/instrumentação , Testes de Função Cardíaca/métodos , Humanos , Masculino , Monitorização Fisiológica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...