Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 508: 76-84, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25437955

RESUMO

The aim of this study was to determine whether citric acid adsorbed onto cobalt ferrite (CoFe2O4) nanoparticles (NPs) influences the bioavailability of their constituents Co and Fe. Dissolution of Co and Fe was assessed by two measures: (i) in aqueous suspension using chemical analysis, prior to application onto the food of test organisms; and (ii) in vivo, measuring the bioavailability in the model terrestrial invertebrate (Porcellio scaber, Isopoda, Crustacea). The isopods were exposed to citric-acid-adsorbed CoFe2O4 NPs for 2 weeks, and tissue accumulation of Co and Fe was assessed. This was compared to pristine CoFe2O4 NPs, and CoCl2 and Fe(III) salts as positive controls. The combined data shows that citric acid enhances free metal ion concentration from CoFe2O4 NPs in aqueous suspension, although in vivo, very similar amounts of assimilated Co were found in isopods exposed to both types of NPs. Therefore, evaluation of the dissolution in suspension by chemical means is not a good predictor of metal assimilation of this model organism; body assimilation of Co and Fe is rather governed by the physiological capacity of P. scaber for the uptake of these metals. Moreover, we propose that citric acid, due to its chelating properties, may hinder the uptake of Co that dissolves from citric-acid-adsorbed CoFe2O4 NPs, if citric acid is present in sufficient quantity.


Assuntos
Cobalto/análise , Compostos Férricos/química , Ferro/análise , Isópodes/metabolismo , Nanopartículas Metálicas/análise , Poluentes do Solo/análise , Animais , Cobalto/metabolismo , Ferro/metabolismo , Poluentes do Solo/metabolismo
2.
Environ Sci Technol ; 47(10): 5400-8, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23578201

RESUMO

With a model invertebrate animal, we have assessed the fate of magnetic nanoparticles in biologically relevant media, i.e., digestive juices. The toxic potential and the internalization of such nanoparticles by nontarget cells were also examined. The aim of this study was to provide experimental evidence on the formation of Co(2+), Fe(2+), and Fe(3+) ions from CoFe2O4 nanoparticles in the digestive juices of a model organism. Standard toxicological parameters were assessed. Cell membrane stability was tested with a modified method for measurement of its quality. Proton-induced X-ray emission and low energy synchrotron radiation X-ray fluorescence were used to study internalization and distribution of Co and Fe. Co(2+) ions were found to be more toxic than nanoparticles. We confirmed that Co(2+) ions accumulate in the hepatopancreas, but Fe(n+) ions or CoFe2O4 nanoparticles are not retained in vivo. A model biological system with a terrestrial isopod is suited to studies of the potential dissolution of ions and other products from metal-containing nanoparticles in biologically complex media.


Assuntos
Cobalto/metabolismo , Crustáceos/metabolismo , Compostos Férricos/metabolismo , Nanopartículas Metálicas/toxicidade , Administração Oral , Animais , Cátions , Espectrofotometria Atômica
3.
Environ Sci Technol ; 46(21): 12112-9, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23046103

RESUMO

The fate of nanoparticles in organisms is of significant interest. In the current work, we used a test system with terrestrial isopods (Porcellio scaber) fed with food spiked with Cu NPs or soluble Cu salt for 14 days. Two different doses were used for spiking to yield final concentrations of 2000 and 5000 µg Cu/g dry food. After the exposure period, part of the exposed group of animals was transferred to clean food to depurate. Cu content was analyzed in the digestive glands, gut, and the 'rest' of the body. Similar patterns of (i) assimilated and depurated amounts of Cu, (ii) Cu body distribution, and (iii) effect on isopods feeding behavior were observed regardless of whether the animals were fed with Cu NPs or soluble Cu salt spiked food. Thus, Cu ions and not Cu NPs were assimilated by the digestive gland cells. Solubilization of the Cu NPs applied to the leaves was also analyzed with chemical methods and recombinant Cu-sensing bacteria. The comparison of the in vitro data on solubilization of Cu NPs and in vivo data on Cu accumulation in the animal tissues showed that about 99% of accumulated copper ions was dissolved from ingested Cu NPs in the digestive system of isopods.


Assuntos
Cobre/metabolismo , Trato Gastrointestinal/metabolismo , Isópodes/metabolismo , Nanopartículas Metálicas , Animais , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...