Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 257(2): 489-499, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31784823

RESUMO

The role of α-carbonic anhydrase 4 (α-CA4) in photosynthetic machinery functioning in thylakoid membranes was studied, using Arabidopsis thaliana wild type plants (WT) and the plants with knockout of At4g20990 gene encoding α-CA4 (αCA4-mut) grown both in low light (LL, 80 µmol quanta m-2 s-1) or in high light (HL, 400 µmol quanta m-2 s-1). It was found that a content of PsbS protein, one of determinants of non-photochemical quenching of chlorophyll fluorescence, increased in mutants by 30% and 100% compared with WT plants in LL and in HL, respectively. Violaxanthin cycle pigments content and violaxanthin deepoxidase activity in HL were also higher in αCA4-mut than in WT plants. The content of PSII core protein, D1, when adapting to HL, decreased in WT plants and remained unchanged in mutants. This indicates, that the decrease in the content of Lhcb1 and Lhcb2 proteins in HL (Rudenko et al. Protoplasma 55(1):69-78, 2018) in WT plants resulted from decrease of both Photosystem II (PSII) complex content and content of these proteins in this complex, whereas in αCA4-mut plants from the latter process only. The absence of α-CA4 did not affect the rate of electron transport through Photosystem I (PSI) in thylakoids of mutant vs. WT, but led to 50-80% increase in the rate of electron transport from H2O to QA, evidencing the location of α-CA4 close to PSII. The latter difference may raise the question about its causal connection with the difference in the D1 protein content change during adapting to increased illumination in the presence and the absence of α-CA4.


Assuntos
Anidrases Carbônicas/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/química
2.
J Plant Physiol ; 215: 110-121, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28623839

RESUMO

Mitochondrial respiratory components participate in the maintenance of chloroplast functional activity. This study investigates the effects 48h de-etiolation of spring wheat seedlings (Triticum aestivum L., var. Irgina) on the expression of genes that encode energy-dissipating respiratory components and antioxidant enzymes under continuous light conditions. The expression of AOX1a following the prolonged darkness exhibited a pattern indicating a prominent dependence on light. The expression of other respiratory genes, including NDA2, NDB2, and UCP1b, increased during de-etiolation and dark-to-light transition; however, changes in the expression of these genes occurred later than those in AOX1a expression. A high expression of NDA1 was detected after 12h of de-etiolation. The suppression of AOX1a, NDA2, NDB2, and UCP1b was observed 24h after de-etiolation when the photosynthetic apparatus and its defence systems against excess light were completely developed. The expression patterns of the respiratory genes and several genes encoding antioxidant enzymes (MnSOD, Cu-ZnSOD, t-APX, GR, and GRX) were quite similar. Our data indicate that the induction of nuclear genes encoding respiratory and antioxidant enzymes allow the plants to control reactive oxygen species (ROS) production and avoid oxidative stress during de-etiolation.


Assuntos
Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Estiolamento/genética , Estiolamento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
3.
PLoS One ; 10(11): e0142833, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26565793

RESUMO

The ability of giant hogweeds to form monodominant communities and even pure monostands in invaded areas has been well documented. Understanding of the mechanisms leading to monostand formation can aid in determining the limitations of existing community ecology models and establishing an effective management plan for invasive species elimination. The aim of this observational study was to investigate traits of Heracleum sosnowskyi plants (demography, canopy structure, morphology and physiology) of the plants in a pure stand in an invaded area useful for understanding potential monostand formation mechanisms. All measurements were performed in one typical Heracleum sosnowskyi monostand located in an abandoned agriculture field located in Syktyvkar city suburb (North-east Russia). This monostand consisted of five main plant growth stages: seed, seedling, juvenile, vegetative adult, and generative adult. Plants of all stages began to grow simultaneously shortly after the snowmelt, at the same time as spring ephemeral plant species grew. The density of generative plants did not change during the vegetation period, but the density of the other plant stages rapidly decreased after the formation of a tall (up to 2-2.5 m) and dense (Leaf area index up to 6.5) canopy. The canopy captured approximately 97% of the light. H. sosnowskyi showed high (several orders of magnitude higher than average taiga zone grasses) photosynthetic water use efficiency (6-7 µM CO2/µM H2O). Formation of H. sosnowskyi monostands occurs primarily in disturbed areas with relatively rich and well-moistened soils. Early commencement of growth, rapid formation of a dense canopy, high efficiency of light and water use during photosynthesis, ability of young plants to survive in low light conditions, rapid recovery of above-ground plant parts after damage, and the high density of the soil seed bank are the most important traits of H. sosnowskyi plants for monostand formation in invaded areas.


Assuntos
Heracleum/fisiologia , Espécies Introduzidas , Folhas de Planta/fisiologia , Agricultura/métodos , Dióxido de Carbono/química , Clorofila/química , Clima , Ecossistema , Meio Ambiente , Luz , Nitrogênio , Fenótipo , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Transpiração Vegetal , Federação Russa , Plântula/crescimento & desenvolvimento , Sementes , Solo
4.
J Plant Physiol ; 174: 75-84, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25462970

RESUMO

This study deals with effects of de-etiolation (48h) of spring wheat (Triticum aestivum L., var. Irgina) seedlings on differential expression of AOX1 genes, levels of AOX protein and the alternative respiratory pathway (AP) capacity. As a result of exposure to continuous irradiation of dark-grown wheat seedlings, the respiratory activity and AP capacity in leaves significantly increased during the first 6h of studies. Expression of AOX1a was up-regulated by light and proved consistent with changes in the AP capacity. Effects on expression of AOX1c were less pronounced. Immunoblot analysis showed three distinct bands of AOX with molecular weights of 34, 36 and 38kDa, with no significant changes in the relative levels during de-etiolation. The lack of a clear correlation between AOX protein amount, AOX1a expression, and AP capacity suggests post-translational control of the enzyme activation. The AOX1a suppression and a decrease in the AP capacity correlated with the sugar pool depletion after 24h of the de-etiolation, which may mean a possible substrate dependence of the AOX activity in the green cells. More efficient malate oxidation by mitochondria as well as the higher AOX capacity during the first 6h of de-etiolation was detected, whereas respiration and AOX capacity with exogenous NADH and glycine increased after 6 and 24h, respectively. We conclude that AOX plays an important role during development of an actively photosynthesizing cell, and can rapidly adapt to changes in metabolism and photosynthesis.


Assuntos
Estiolamento/efeitos da radiação , Luz , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plântula/fisiologia , Triticum/enzimologia , Triticum/efeitos da radiação , Carboidratos/análise , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos da radiação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Immunoblotting , Isoenzimas/metabolismo , Mitocôndrias/efeitos da radiação , Oxigênio/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plântula/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Solubilidade , Triticum/genética , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...