Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci ; 300: 130-137, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29596852

RESUMO

We have shown previously that different homeostatic mechanisms in biochemistry create input-output curves with a "chair" shape. At equilibrium, for intermediate values of a parameter (often an input), a variable, Z, changes very little (the homeostatic plateau), but for low and high values of the parameter, Z changes rapidly (escape from homeostasis). In all cases previously studied, the steady state was stable for each value of the input parameter. Here we show that, for the feedback inhibition motif, stability may be lost through a Hopf bifurcation on the homeostatic plateau and then regained by another Hopf bifurcation. If the limit cycle oscillations are relatively small in the unstable interval, then the variable Z maintains homeostasis despite the instability. We show that the existence of an input interval in which there are oscillations, the length of the interval, and the size of the oscillations depend in interesting and complicated ways on the properties of the inhibition function, f, the length of the chain, and the size of a leakage parameter.


Assuntos
Fenômenos Bioquímicos/fisiologia , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Modelos Biológicos , Animais , Humanos
2.
Phys Rev Lett ; 98(25): 254101, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17678026

RESUMO

We present the results of an experimental investigation of a network of nonlinear coupled oscillators which are coupled in feed-forward mode. By exploiting the nonlinear response of each oscillator near its intrinsic Hopf bifurcation point, we have found remarkable amplification of small signals over a narrow bandwidth with a large dynamic range. The effect is exploited to extract a small amplitude periodic signal from an input time series which is dominated by noise. Specifically, we have used this relatively simple experimental system to measure responses with a bandwidth of approximately 1% of the central frequency, amplifications of approximately 60 dB, and a dynamic range of approximately 80 dB and can extract signals from a time series with a signal to noise ratio of approximately -50 dB.

3.
J Math Biol ; 42(4): 291-326, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11374122

RESUMO

In this paper we continue the analysis of a network of symmetrically coupled cells modeling central pattern generators for quadruped locomotion proposed by Golubitsky, Stewart, Buono, and Collins. By a cell we mean a system of ordinary differential equations and by a coupled cell system we mean a network of identical cells with coupling terms. We have three main results in this paper. First, we show that the proposed network is the simplest one modeling the common quadruped gaits of walk, trot, and pace. In doing so we prove a general theorem classifying spatio-temporal symmetries of periodic solutions to equivariant systems of differential equations. We also specialize this theorem to coupled cell systems. Second, this paper focuses on primary gaits; that is, gaits that are modeled by output signals from the central pattern generator where each cell emits the same waveform along with exact phase shifts between cells. Our previous work showed that the network is capable of producing six primary gaits. Here, we show that under mild assumptions on the cells and the coupling of the network, primary gaits can be produced from Hopf bifurcation by varying only coupling strengths of the network. Third, we discuss the stability of primary gaits and exhibit these solutions by performing numerical simulations using the dimensionless Morris-Lecar equations for the cell dynamics.


Assuntos
Locomoção/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Marcha/fisiologia , Computação Matemática
4.
Philos Trans R Soc Lond B Biol Sci ; 356(1407): 299-330, 2001 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-11316482

RESUMO

This paper is concerned with a striking visual experience: that of seeing geometric visual hallucinations. Hallucinatory images were classified by Klüver into four groups called form constants comprising (i) gratings, lattices, fretworks, filigrees, honeycombs and chequer-boards, (ii) cobwebs, (iii) tunnels, funnels, alleys, cones and vessels, and (iv) spirals. This paper describes a mathematical investigation of their origin based on the assumption that the patterns of connection between retina and striate cortex (henceforth referred to as V1)-the retinocortical map-and of neuronal circuits in V1, both local and lateral, determine their geometry. In the first part of the paper we show that form constants, when viewed in V1 coordinates, essentially correspond to combinations of plane waves, the wavelengths of which are integral multiples of the width of a human Hubel-Wiesel hypercolumn, ca. 1.33-2 mm. We next introduce a mathematical description of the large-scale dynamics of V1 in terms of the continuum limit of a lattice of interconnected hypercolumns, each of which itself comprises a number of interconnected iso-orientation columns. We then show that the patterns of interconnection in V1 exhibit a very interesting symmetry, i.e. they are invariant under the action of the planar Euclidean group E(2)-the group of rigid motions in the plane-rotations, reflections and translations. What is novel is that the lateral connectivity of V1 is such that a new group action is needed to represent its properties: by virtue of its anisotropy it is invariant with respect to certain shifts and twists of the plane. It is this shift-twist invariance that generates new representations of E(2). Assuming that the strength of lateral connections is weak compared with that of local connections, we next calculate the eigenvalues and eigenfunctions of the cortical dynamics, using Rayleigh-Schrödinger perturbation theory. The result is that in the absence of lateral connections, the eigenfunctions are degenerate, comprising both even and odd combinations of sinusoids in straight phi, the cortical label for orientation preference, and plane waves in r, the cortical position coordinate. 'Switching-on' the lateral interactions breaks the degeneracy and either even or else odd eigenfunctions are selected. These results can be shown to follow directly from the Euclidean symmetry we have imposed. In the second part of the paper we study the nature of various even and odd combinations of eigenfunctions or planforms, the symmetries of which are such that they remain invariant under the particular action of E(2) we have imposed. These symmetries correspond to certain subgroups of E(2), the so-called axial subgroups. Axial subgroups are important in that the equivariant branching lemma indicates that when a symmetrical dynamical system becomes unstable, new solutions emerge which have symmetries corresponding to the axial subgroups of the underlying symmetry group. This is precisely the case studied in this paper. Thus we study the various planforms that emerge when our model V1 dynamics become unstable under the presumed action of hallucinogens or flickering lights. We show that the planforms correspond to the axial subgroups of E(2), under the shift-twist action. We then compute what such planforms would look like in the visual field, given an extension of the retinocortical map to include its action on local edges and contours. What is most interesting is that, given our interpretation of the correspondence between V1 planforms and perceived patterns, the set of planforms generates representatives of all the form constants. It is also noteworthy that the planforms derived from our continuum model naturally divide V1 into what are called linear regions, in which the pattern has a near constant orientation, reminiscent of the iso-orientation patches constructed via optical imaging. The boundaries of such regions form fractures whose points of intersection correspond to the well-known 'pinwheels'. To complete the study we then investigate the stability of the planforms, using methods of nonlinear stability analysis, including Liapunov-Schmidt reduction and Poincaré-Lindstedt perturbation theory. We find a close correspondence between stable planforms and form constants. The results are sensitive to the detailed specification of the lateral connectivity and suggest an interesting possibility, that the cortical mechanisms by which geometric visual hallucinations are generated, if sited mainly in V1, are closely related to those involved in the processing of edges and contours.


Assuntos
Alucinações , Córtex Visual/fisiologia , Animais , Humanos , Modelos Lineares , Modelos Biológicos
5.
Artigo em Inglês | MEDLINE | ID: mdl-11031572

RESUMO

A bifurcation scenario is presented for three-dimensional vortex shedding in the wake of a circular cylinder for Reynolds numbers up to 300. Amplitude equations are proposed to describe the nonlinear interaction between two three-dimensional modes of shedding with different spanwise wave numbers and different spatiotemporal symmetries. The amplitude equations explain many features of the transition scenario observed experimentally.

6.
Nature ; 401(6754): 693-5, 1999 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-10537106

RESUMO

Animal locomotion is controlled, in part, by a central pattern generator (CPG), which is an intraspinal network of neurons capable of generating a rhythmic output. The spatio-temporal symmetries of the quadrupedal gaits walk, trot and pace lead to plausible assumptions about the symmetries of locomotor CPGs. These assumptions imply that the CPG of a quadruped should consist of eight nominally identical subcircuits, arranged in an essentially unique matter. Here we apply analogous arguments to myriapod CPGs. Analyses based on symmetry applied to these networks lead to testable predictions, including a distinction between primary and secondary gaits, the existence of a new primary gait called 'jump', and the occurrence of half-integer wave numbers in myriapod gaits. For bipeds, our analysis also predicts two gaits with the out-of-phase symmetry of the walk and two gaits with the in-phase symmetry of the hop. We present data that support each of these predictions. This work suggests that symmetry can be used to infer a plausible class of CPG network architectures from observed patterns of animal gaits.


Assuntos
Marcha/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Animais , Modelos Biológicos , Rede Nervosa/fisiologia , Medula Espinal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...