Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631625

RESUMO

This paper presents a novel approach to reducing undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two standard patch antenna cells with 0.07λ edge-to-edge distance were designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator was applied between the antennas to suppress their mutual coupling. For the first time, the optimum values of the resonator geometry parameters were obtained using the proposed inverse artificial neural network (ANN) model, constructed from the sampled EM-simulation data of the system, and trained using the particle swarm optimization (PSO) algorithm. The inverse ANN surrogate directly yields the optimum resonator dimensions based on the target values of its S-parameters being the input parameters of the model. The involvement of surrogate modeling also contributes to the acceleration of the design process, as the array does not need to undergo direct EM-driven optimization. The obtained results indicate a remarkable cancellation of the surface currents between two antennas at their operating frequency, which translates into isolation as high as -46.2 dB at 2.45 GHz, corresponding to over 37 dB improvement as compared to the conventional setup.

2.
Sensors (Basel) ; 23(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37571792

RESUMO

In this paper, a radiating element consisting of a modified circular patch is proposed for MIMO arrays for 5G millimeter-wave applications. The radiating elements in the proposed 2 × 2 MIMO antenna array are orthogonally configured relative to each other to mitigate mutual coupling that would otherwise degrade the performance of the MIMO system. The MIMO array was fabricated on Rogers RT/Duroid high-frequency substrate with a dielectric constant of 2.2, a thickness of 0.8 mm, and a loss tangent of 0.0009. The individual antenna in the array has a measured impedance bandwidth of 1.6 GHz from 27.25 to 28.85 GHz for S11 ≤ -10 dB, and the MIMO array has a gain of 7.2 dBi at 28 GHz with inter radiator isolation greater than 26 dB. The gain of the MIMO array was increased by introducing frequency-selective surface (FSS) consisting of 7 × 7 array of unit cells comprising rectangular C-shaped resonators, with one embedded inside the other with a central crisscross slotted patch. With the FSS, the gain of the MIMO array increased to 8.6 dBi at 28 GHz. The radiation from the array is directional and perpendicular to the plain of the MIMO array. Owing to the low coupling between the radiating elements in the MIMO array, its Envelope Correlation Coefficient (ECC) is less than 0.002, and its diversity gain (DG) is better than 9.99 dB in the 5G operating band centered at 28 GHz between 26.5 GHz and 29.5 GHz.

3.
Sci Rep ; 12(1): 17275, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241636

RESUMO

Surrogate modeling has become the method of choice in solving an increasing number of antenna design tasks, especially those involving expensive full-wave electromagnetic (EM) simulations. Notwithstanding, the curse of dimensionality considerably affects conventional metamodeling methods, and their capability to efficiently handle nonlinear antenna characteristics over broad ranges of the system parameters is limited. Performance-driven (or constrained) modeling frameworks may be employed to mitigate these issues by considering a construction of surrogates from the standpoint of the antenna performance figures rather than directly geometry parameters. This permits a significant reduction of the model setup cost without restricting its design utility. This paper proposes a novel modeling framework, which capitalizes on the domain confinement concepts and also incorporates variable-fidelity EM simulations, both at the surrogate domain definition stage, and when rendering the final surrogate. The latter employs co-kriging as a method of blending simulation data of different fidelities. The presented approach has been validated using three microstrip antennas, and demonstrated to yield reliable models at remarkably low CPU costs, as compared to both conventional and performance-driven modeling procedures.

4.
Sci Rep ; 12(1): 15185, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071205

RESUMO

Quantifying the effects of fabrication tolerances and uncertainties of other types is fundamental to improve antenna design immunity to limited accuracy of manufacturing procedures and technological spread of material parameters. This is of paramount importance especially for antenna design in the industrial context. Degradation of electrical and field properties due to geometry parameter deviations often manifests itself as, e.g., center frequency shifts or compromised impedance matching. Improving antenna performance at the presence of uncertainties is typically realized through maximization of the fabrication yield. This is normally carried out at the accuracy level of full-wave electromagnetic (EM) analysis, which incurs considerable computational expenses. The involvement of surrogate modeling techniques is the most common approach to alleviating these difficulties, yet conventional modeling methods suffer to a great extent form the curse of dimensionality. This work proposes a technique for low-cost yield optimization of antenna structures. It capitalizes on meticulous definition of the domain of the metamodel constructed for statistical analysis purposes. The domain is spanned by a limited number of essential directions being the most influential in terms of affecting antenna responses in the frequency bands of interest. These directions are determined through an automated decision-making process based on the assessment of the circuit response variability. Our approach permits maintaining small domain volume, which translates into low cost of surrogate model setup, while providing sufficient room for yield improvement. The presented method is validated using three antenna structures and favorably compared to several surrogate-assisted benchmark methods. EM-driven Monte Carlo simulation is also conducted to verify reliability of the yield optimization process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...