Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 31: 101106, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37766790

RESUMO

Despite its established neuroprotective effect on dopaminergic neurons and encouraging phase I results, intraputaminal GDNF administration failed to demonstrate significant clinical benefits in Parkinson's disease patients. Different human GDNF doses were delivered in the striatum of rats with a progressive 6-hydroxydopamine lesion using a sensitive doxycycline-regulated AAV vector. GDNF treatment was applied either continuously or intermittently (2 weeks on/2 weeks off) during 17 weeks. Stable reduction of motor impairments as well as increased number of dopaminergic neurons and striatal innervation were obtained with a GDNF dose equivalent to 3- and 10-fold the rat endogenous level. In contrast, a 20-fold increased GDNF level only temporarily provided motor benefits and neurons were not spared. Strikingly, oxidized DNA in the substantia nigra increased by 50% with 20-fold, but not 3-fold GDNF treatment. In addition, only low-dose GDNF allowed to preserve dopaminergic neuron cell size. Finally, aberrant dopaminergic fiber sprouting was observed with 20-fold GDNF but not at lower doses. Intermittent 20-fold GDNF treatment allowed to avoid toxicity and spare dopaminergic neurons but did not restore their cell size. Our data suggest that maintaining GDNF concentration under a threshold generating oxidative stress is a pre-requisite to obtain significant symptomatic relief and neuroprotection.

2.
Brain Behav Immun ; 69: 235-254, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29175168

RESUMO

Enriched environment (EE) induces plasticity changes in the brain. Recently, CD4+ T cells have been shown to be involved in brain plasticity processes. Here, we show that CD8+ T cells are required for EE-induced brain plasticity in mice, as revealed by measurements of hippocampal volume, neurogenesis in the DG of the hippocampus, spinogenesis and glutamatergic synaptic function in the CA of the hippocampus. As a consequence, EE-induced behavioral benefits depend, at least in part, on CD8+ T cells. In addition, we show that spleen CD8+ T cells from mice housed in standard environment (SE) and EE have different properties in terms of 1) TNFα release after in vitro CD3/CD28 or PMA/Iono stimulation 2) in vitro proliferation properties 3) CD8+ CD44+ CD62Llow and CD62Lhi T cells repartition 4) transcriptomic signature as revealed by RNA sequencing. CD8+ T cells purified from the choroid plexus of SE and EE mice also exhibit different transcriptomic profiles as highlighted by single-cell mRNA sequencing. We show that CD8+ T cells are essential mediators of beneficial EE effects on brain plasticity and cognition. Additionally, we propose that EE differentially primes CD8+ T cells leading to behavioral improvement.


Assuntos
Comportamento Animal/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Meio Ambiente , Hipocampo/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Proliferação de Células/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Camundongos , Atividade Motora/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...