Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732005

RESUMO

In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.


Assuntos
Oxalato de Cálcio , Hipercalciúria , Cálculos Renais , Camundongos Knockout , Animais , Hipercalciúria/metabolismo , Hipercalciúria/genética , Concentração de Íons de Hidrogênio , Camundongos , Oxalato de Cálcio/metabolismo , Cálculos Renais/metabolismo , Cálculos Renais/etiologia , Cálculos Renais/patologia , Fosfatos de Cálcio/metabolismo , Nefrolitíase/metabolismo , Nefrolitíase/genética , Nefrolitíase/patologia , Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Acetazolamida/farmacologia
2.
Cell Signal ; 107: 110681, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062436

RESUMO

Oxidative stress is a predisposing factor in Chronic Obstructive Pulmonary Disease (COPD). Specifically, pulmonary epithelial (PE) cells reduce antioxidant capacity during COPD because of the continuous production of reactive oxygen species (ROS). However, the molecular pathogenesis that governs such ROS activity is unclear. Here we show that the dysregulation of intracellular calcium concentration ([Ca2+]i) in PE cells from COPD patients, compared to the healthy PE cells, is associated with the robust functional expressions of Transient Receptor Potential Canonical (TRPC)1 and TRPC3 channels, and Ca2+ entry (SOCE) components, Stromal Interaction Molecule 1 (STIM1) and ORAI1 channels. Additionally, the elevated expression levels of fibrotic, inflammatory, oxidative, and apoptotic markers in cells from COPD patients suggest detrimental pathway activation, thereby reducing the ability of lung remodeling. To further delineate the mechanism, we used human lung epithelial cell line, A549, since the behavior of SOCE and the expression patterns of TRPC1/C3, STIM1, and ORAI1 were much like PE cells. Notably, the knockdown of TRPC1/C3 in A549 cells substantially reduced the SOCE-induced [Ca2+]i rise, and reversed the ROS-mediated oxidative, fibrotic, inflammatory, and apoptotic responses, thus confirming the role of TRPC1/C3 in SOCE driven COPD-like condition. Higher TRPC1/C3, STIM1, and ORAI1 expressions, along with a greater Ca2+ entry, via SOCE in ROS-induced A549 cells, led to the rise in oxidative, fibrotic, inflammatory, and apoptotic gene expression, specifically through the extracellular signal-regulated kinase (ERK) pathway. Abatement of TRPC1 and/or TRPC3 reduced the mobilization of [Ca2+]i and reversed apoptotic gene expression and ERK activation, signifying the involvement of TRPC1/C3. Together these data suggest that TRPC1/C3 and SOCE facilitate the COPD condition through ROS-mediated cell death, thus implicating their likely roles as potential therapeutic targets for COPD. SUMMARY: Alterations in Ca2+ signaling modalities in normal pulmonary epithelial cells exhibit COPD through oxidative stress and cellular injury, compromising repair, which was alleviated through inhibition of store-operated calcium entry. SUBJECT AREA: Calcium, ROS, Cellular signaling, lung disease.


Assuntos
Canais de Cálcio , Doença Pulmonar Obstrutiva Crônica , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína ORAI1/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
3.
J Mater Chem B ; 10(1): 34-46, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34779812

RESUMO

Calcium phosphate (CaP) biomineralization is the hallmark of extra-skeletal tissue calcification and renal calcium stones. Although such a multistep process starts with CaP crystal formation, the mechanism is still poorly understood due to the complexity of the in vivo system and the lack of a suitable approach to simulate a truly in vivo-like environment. Although endogenous proteins and lipids are engaged with CaP crystals in such a biological process of stone formation, most in vitro studies use synthetic materials that can display differential bioreactivity and molecular recognition by the cellular component. Here, we used our in vitro microfluidic (MF) tubular structure, which is the first completely cylindrical platform, with renal tubular cellular microenvironments closest to the functional human kidney tubule, to understand the precise role of biological components in this process. We systematically evaluated the contribution of synthetic and biological components in the stone-forming process in the presence of dynamic microenvironmental cues that originated due to cellular pathophysiology, which are critical for the nucleation, aggregation, and growth of CaP crystals. Our results show that crystal aggregation and growth were enhanced by immunoglobulin G (IgG), which was further inhibited by etidronic acid due to the chelation of extracellular Ca2+. Interestingly, biogenic CaP crystals from mice urine, when applied with cell debris and non-specific protein (bovine serum albumin), exhibited a more discrete crystal growth pattern, compared to exposure to synthetic CaP crystals under similar conditions. Furthermore, proteins found on those calcium crystals from mice urine produced discriminatory effects on crystal-protein attachment. Specifically, such biogenic crystals exhibited enhanced affinity to the proteins inherent to those crystals. More importantly, a physiological comparison of crystal induction in renal tubular cells revealed that biogenic crystals are less effective at producing a sustained rise in cytosolic Ca2+ compared to synthetic crystals, suggesting a milder detrimental effect to downstream signaling. Finally, synthetic crystal-internalized cells induced more oxidative stress, inflammation, and cellular damage compared to the biogenic crystal-internalized cells. Together, these results suggest that the intrinsic nature of biogenically derived components are appropriate to generate the molecular recognition needed for spatiotemporal effects and are critical towards understanding the process of kidney stone formation.


Assuntos
Materiais Biocompatíveis/análise , Fosfatos de Cálcio/análise , Cálculos Renais/fisiopatologia , Túbulos Renais/fisiopatologia , Técnicas Analíticas Microfluídicas , Animais , Cristalização , Humanos , Teste de Materiais , Camundongos , Tamanho da Partícula
4.
Bone Rep ; 14: 100754, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33665237

RESUMO

Bone biomineralization is a complex process in which type I collagen and associated non-collagenous proteins (NCPs), including glycoproteins and proteoglycans, interact closely with inorganic calcium and phosphate ions to control the precipitation of nanosized, non-stoichiometric hydroxyapatite (HAP, idealized stoichiometry Ca10(PO4)6(OH)2) within the organic matrix of a tissue. The ability of certain vertebrate tissues to mineralize is critically related to several aspects of their function. The goal of this study was to identify specific NCPs in mineralizing and non-mineralizing tissues of two animal models, rat and turkey, and to determine whether some NCPs are unique to each type of tissue. The tissues investigated were rat femur (mineralizing) and tail tendon (non-mineralizing) and turkey leg tendon (having both mineralizing and non-mineralizing regions in the same individual specimen). An experimental approach ex vivo was designed for this investigation by combining sequential protein extraction with comprehensive protein mapping using proteomics and Western blotting. The extraction method enabled separation of various NCPs based on their association with either the extracellular organic collagenous matrix phases or the inorganic mineral phases of the tissues. The proteomics work generated a complete picture of NCPs in different tissues and animal species. Subsequently, Western blotting provided validation for some of the proteomics findings. The survey then yielded generalized results relevant to various protein families, rather than only individual NCPs. This study focused primarily on the NCPs belonging to the small leucine-rich proteoglycan (SLRP) family and the small integrin-binding ligand N-linked glycoproteins (SIBLINGs). SLRPs were found to be associated only with the collagenous matrix, a result suggesting that they are mainly involved in structural matrix organization and not in mineralization. SIBLINGs as well as matrix Gla (γ-carboxyglutamate) protein were strictly localized within the inorganic mineral phase of mineralizing tissues, a finding suggesting that their roles are limited to mineralization. The results from this study indicated that osteocalcin was closely involved in mineralization but did not preclude possible additional roles as a hormone. This report provides for the first time a spatial survey and comparison of NCPs from mineralizing and non-mineralizing tissues ex vivo and defines the proteome of turkey leg tendons as a model for vertebrate mineralization.

5.
Heliyon ; 6(12): e05704, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33324768

RESUMO

Virtual "online" teaching has been adopted by most universities around the world during the COVID-19 outbreak. This study aims to investigate the factors that might affect students' preference for virtual learning. Since a second wave of such pandemic is expected to occur, professors and teaching assistants may want to be prepared and aware to create an effective virtual learning environment for students. Using an online survey questionnaire, a total of 488 students in their basic science years of study (first to the third year) who are enrolled in dental and medical college responded to the online survey. The authors utilized a binary logistic regression model to estimate the impact of the nine explanatory variables (gender, student's year of study, accessibility of online tools, class engagement in virtual classes, GPA change during COVID-19 outbreak, class attendance in virtual vs. in-person lectures, type of study material, time saving for virtual classes, and anxiety level during the COVID-19 outbreak) on the students' preference for virtual learning. The analysis of variance showed that three out of the nine variables were not significant to the model: gender, study level, and study material. In addition, to understand the behavioral intention for the students during such pandemic, the online survey questionnaire captured students' voice on their willingness to wear masks, wash their hands, or both as well as their acceptance to take the vaccine once it is available. The results showed that 7.02 % of the students did not change simple health behaviors and 18.43% are not interested in taking the vaccine. This implies the importance of enacting new laws for reopening universities, applying high fines for violators, and obligating students to take the vaccine since university settings have high levels of social contact with populations from different communities and countries.

6.
Biotechnol Bioeng ; 117(6): 1826-1838, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32073148

RESUMO

Extracellular matrix microstructure and mechanics are crucial to breast cancer progression and invasion into surrounding tissues. The peritumor collagen network is often dense and aligned, features which in vitro models lack. Aspiration of collagen hydrogels led to densification and alignment of microstructure surrounding embedded cancer cells. Two metastasis-derived breast cancer cell lines, MDA-MB-231 and MCF-7, were cultured in initially 4 mg/ml collagen gels for 3 days after aspiration, as well as in unaspirated control hydrogels. Videomicroscopy during aspiration, and at 0, 1, and 3 days after aspiration, epifluorescence microscopy of phalloidin-stained F-actin cytoskeleton, histological sections, and soluble metabolic byproducts from constructs were collected to characterize effects on the embedded cell morphology, the collagen network microstructure, and proliferation. Breast cancer cells remained viable after aspiration-ejection, proliferating slightly less than in unaspirated gels. Furthermore, MDA-MB-231 cells appear to partially relax the collagen network and lose alignment 3 days after aspiration. Aspiration-ejection generated aligned, compact collagen network microstructure with immediate cell co-orientation and higher cell number density apparently through purely physical means, though cell-collagen contact guidance and network remodeling influence cell organization and collagen network microstructure during subsequent culture. This study establishes a platform to determine the effects of collagen density and alignment on cancer cell behavior, with translational potential for anticancer drug screening in a biomimetic three-dimensional matrix microenvironment, or implantation in preclinical models.


Assuntos
Neoplasias da Mama/patologia , Comunicação Celular , Colágeno/química , Hidrogéis/química , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Microambiente Tumoral
7.
Cell Signal ; 67: 109484, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31770578

RESUMO

Oxidative stress and reactive oxygen species (ROS) generation can be influenced by G-protein coupled receptor (GPCR)-mediated regulation of intracellular Ca2+ ([Ca2+]i) signaling. ROS production are much higher in proximal tubular (PT) cells; in addition, the lack of antioxidants enhances the vulnerability to oxidative damage. Despite such predispositions, PT cells show resiliency, and therefore must possess some inherent mechanism to protect from oxidative damage. While the mechanism in unknown, we tested the effect of l-ornithine, since it is abundantly present in PT luminal fluid and can activate Ca2+-sensing receptor (CaSR), a GPCR, expressed in the PT luminal membrane. We used human kidney 2 (HK2) cells, a PT cell line, and performed Ca2+ imaging and electrophysiological experiments to show that l-ornithine has a concentration-dependent effect on CaSR activation. We further demonstrate that the operation of CaSR activated Ca2+ signaling in HK-2 cells mediated by the transient receptor potential canonical (TRPC) dependent receptor-operated Ca2+ entry (ROCE) using pharmacological and siRNA inhibitors. Since PT cells are vulnerable to ROS, we simulated such deleterious effects using genetically encoded peroxide-induced ROS production (HyperRed indicator) to show that the l-ornithine-induced ROCE mediated [Ca2+]i signaling protects from ROS production. Furthermore, we performed cell viability, necrosis and apoptosis assays, and mitochondrial oxidative gene expression to establish that presence of l-ornithine rescued the ROS-induced damage in HK-2 cells. Moreover, l-ornithine-activation of CaSR can reverse ROS production and apoptosis via mitogen-activated protein kinase p38 activation. Such nephroprotective role of l-ornithine can be useful as the translational option for reversing kidney diseases involving PT cell damage due to oxidative stress or crystal nephropathies.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Ornitina/farmacologia , Substâncias Protetoras/farmacologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citoproteção/efeitos dos fármacos , Fluorescência , Proteínas de Ligação ao GTP/metabolismo , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Cell Death Discov ; 5: 124, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396401

RESUMO

Calcium crystal internalization into proximal tubular (PT) cells results in acute kidney injury, nephrocalcinosis, chronic kidney disease (CKD), and kidney-stone formation. Ca2+ supersaturation in PT luminal fluid induces calcium crystal formation, leading to aberrant crystal internalization into PT cells. While such crystal internalization produces reactive oxygen species (ROS), cell membrane damage, and apoptosis; the upstream signaling events involving dysregulation of intracellular Ca2+ homeostasis and ER stress, remain largely unknown. We have recently described a transepithelial Ca2+ transport pathway regulated by receptor-operated Ca2+ entry (ROCE) in PT cells. Therefore, we examined the pathophysiological consequence of internalization of stone-forming calcium crystals such as calcium phosphate (CaP), calcium oxalate (CaOx), and CaP + CaOx (mixed) crystals on the regulation of intracellular Ca2+ signaling by measuring dynamic changes in Ca2+ transients in HK2, human PT cells, using pharmacological and siRNA inhibitors. The subsequent effect on ER stress was measured by changes in ER morphology, ER stress-related gene expression, endogenous ROS production, apoptosis, and necrosis. Interestingly, our data show that crystal internalization induced G-protein-coupled receptor-mediated sustained rise in intracellular Ca2+ concentration ([Ca2+]i) via store-operated Ca2+ entry (SOCE); suggesting that the mode of Ca2+ entry switches from ROCE to SOCE following crystal internalization. We found that SOCE components-stromal interacting molecules 1 and 2 (STIM1, STIM2) and ORAI3 (SOCE) channel were upregulated in these crystal-internalized cells, which induced ER stress, ROS production, and cell death. Finally, silencing those SOCE genes protected crystal-internalized cells from prolonged [Ca2+]i rise and ER stress. Our data provide insight into the molecular mechanism of crystal-induced Ca2+ dysregulation, ER stress, and PT cell death and thus could have a translational role in treating crystal nephropathies including kidney stones. Taken together, modulation of Ca2+ signaling can be used as a tool to reverse the pathological consequence of crystal-induced conditions including cardiovascular calcification.

9.
Sci Rep ; 9(1): 875, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696888

RESUMO

Melamine, which induces proximal tubular (PT) cell damage has a greater nephrotoxic effect when combined with cyanuric and uric acids; however, it is unknown whether such effect can stimulate calcium phosphate (CaP)/calcium oxalate (CaOx) stone formation. Here, we show that melamine acts as an inducer of CaP, CaOx and CaP + CaOx (mixed) crystal formations in a time and concentration-dependent manner by stabilizing those crystals and further co-aggregating with melamine. To explore the physiological relevance of such melamine-augmented calcium crystal formation, we used 2-dimensional (2D) and 3D microfluidic (MF) device, embedded with PT cells, which also resembled the effect of melamine-stimulated CaP, CaOx and mixed crystal formation. Significantly, addition of preformed CaP and/or CaOx crystal in the presence of melamine, further potentiated those crystal formations in 3D MFs, which helped the growth and aggregation of mixed crystals. Our data show that the mechanism of such predisposition of stone formation could be largely due to co-crystallization between melamine and CaP/CaOx and pronounced effect on induction of stone-forming pathway activation in 3D MF. Taken together, melamine-induced CaP and/or CaOx crystal formation ex-vivo will help us in understanding the larger role of melamine as an environmental toxicant in producing the pathology in similar cellular microenvironments.


Assuntos
Cálculos Renais/química , Túbulos Renais Proximais/metabolismo , Triazinas/química , Cálcio/metabolismo , Oxalato de Cálcio/química , Oxalato de Cálcio/metabolismo , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Cálcio da Dieta , Linhagem Celular , Cristalização , Humanos , Rim/metabolismo , Cálculos Renais/metabolismo , Túbulos Renais Proximais/química , Dispositivos Lab-On-A-Chip , Minerais
10.
Chem Commun (Camb) ; 53(26): 3697-3700, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28294245

RESUMO

An NIR-emitting probe (λem ∼ 700 nm) with a large Stokes shift (Δλ ≈ 234 nm) is synthesized by using excited-state intramolecular proton transfer (ESIPT). The phenolic proton, which controls ESIPT, acts as a switch to give strong fluorescence at pH ≈ 5. The probe can selectively show lysosome organelles, therefore leading to a lysosome probe without exhibiting "an alkalinizing effect".

11.
FASEB J ; 31(4): 1556-1570, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28073835

RESUMO

Contributions of mechanical signals to airway remodeling during asthma are poorly understood. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, has been implicated in cardiac and pulmonary fibrosis; however, its role in asthma remains elusive. Employing a Dermatophagoides farinae-induced asthma model, we report here that TRPV4-knockout mice were protected from D. farinae-induced airway remodeling. Furthermore, lung fibroblasts that were isolated from TRPV4-knockout mice showed diminished differentiation potential compared with wild-type mice. Fibroblasts from asthmatic lung exhibited increased TRPV4 activity and enhanced differentiation potential compared with normal human lung fibroblasts. Of interest, TGF-ß1 treatment enhanced TRPV4 activation in a PI3K-dependent manner in normal human lung fibroblasts in vitro Mechanistically, TRPV4 modulated matrix remodeling in the lung via 2 distinct but dependent pathways: one enhances matrix deposition by fibrotic gene activation, whereas the other slows down matrix degradation by increased plasminogen activator inhibitor 1. Of importance, both pathways are regulated by Rho/myocardin-related transcription factor-A and contribute to fibroblast differentiation and matrix remodeling in the lung. Thus, our results support a unique role for TRPV4 in D. farinae-induced airway remodeling and warrant further studies in humans for it to be used as a novel therapeutic target in the treatment of asthma.-Gombedza, F., Kondeti, V., Al-Azzam, N., Koppes, S., Duah, E., Patil, P., Hexter, M., Phillips, D., Thodeti, C. K., Paruchuri, S. Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation.


Assuntos
Remodelação das Vias Aéreas , Asma/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Canais de Cátion TRPV/metabolismo , Adulto , Animais , Asma/etiologia , Asma/genética , Asma/patologia , Células Cultivadas , Dermatophagoides farinae/imunologia , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Canais de Cátion TRPV/genética , Fator de Crescimento Transformador beta/metabolismo
12.
J Cell Physiol ; 230(3): 595-602, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25161061

RESUMO

Mast cells (MCs) are important effector cells in asthma and pulmonary inflammation, and their proliferation and maturation is maintained by stem cell factor (SCF) via its receptor, c-Kit. Cysteinyl leukotrienes (cys-LTs) are potent inflammatory mediators that signal through CysLT1 R and CysLT2 R located on the MC surface, and they enhance MC inflammatory responses. However, it is not known if SCF and cys-LTs cross-talk and influence MC hyperplasia and activation in inflammation. Here, we report the concerted effort of the growth factor SCF and the inflammatory mediator LTD4 in MC activation. Stimulation of MCs by LTD4 in the presence of SCF enhances c-Kit-mediated proliferative responses. Similarly, SCF synergistically enhances LTD4 -induced calcium, c-fos expression and phosphorylation, as well as MIP1ß generation in MCs. These findings suggest that integration of SCF and LTD4 signals may contribute to MC hyperplasia and hyper-reactivity during airway hyper-response and inflammation.


Assuntos
Proliferação de Células/genética , Inflamação/genética , Mastócitos/metabolismo , Mastocitose/genética , Fator de Células-Tronco/metabolismo , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Leucotrieno D4/administração & dosagem , Mastócitos/efeitos dos fármacos , Mastocitose/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Leucotrienos/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Sci Rep ; 3: 3274, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24253666

RESUMO

Cysteinyl leukotrienes (cys-LTs), LTC4, LTD4, LTE4 are potent inflammatory lipid mediators that act through two distinct G-protein-coupled receptors, CysLT1R and CysLT2R. Although cys-LTs are shown to induce vascular leakage and atherosclerosis, the molecular mechanism by which cys-LTs modulate endothelial function is not known. Here, we show that cys-LTs (LTC4 and LTD4) induce robust calcium influx in human umbilical vein endothelial cells (HUVECs) through CysLT2R, but not CysLT1R. Further, cys-LT treatment induced endothelial cell (EC) contraction leading to monolayer disruption via CysLT2R/Rho kinase dependent pathway. Furthermore, stimulation with cys-LTs potentiated TNFα-induced VCAM-1 expression and leukocyte recruitment to ECs through CysLT2R. In contrast, we found that both LTC4 and LTD4 stimulated EC proliferation through CysLT1R. Taken together, these results suggest that cys-LTs induce endothelial inflammation and proliferation via CysLT2R/Rho kinase and CysLT1R/Erk dependent pathways, respectively, which play critical role in the etiology of cardiovascular diseases such as atherosclerosis and myocardial infarction.


Assuntos
Cisteína/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Leucotrienos/farmacologia , Receptores de Leucotrienos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...