Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 4: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32352034

RESUMO

Growth arrest-specific gene 6 (Gas6) is a cytokine that binds to receptor tyrosine kinases Tyro3, Axl, and Mer. Numerous studies have suggested that macrophage-derived Gas6 interacts with Axl to promote cancer progression, and Axl has been associated with poor clinical outcome. However, the expression and relevance of Gas6 in human breast cancer patients has not been studied. Analysis of tissue microarrays showed that Gas6 was highly expressed in ductal carcinoma in situ (DCIS) but markedly decreased in invasive breast cancer. Gas6 and Axl were weakly correlated, suggesting that their functions may not exclusively rely on each other. Analyses of publicly available databases showed significantly improved overall and relapse-free survival in patients with high Gas6 mRNA, particularly in luminal A breast cancers. These findings indicate that tumor-derived Gas6 is not overexpressed in invasive breast cancer, and may not be a negative prognostic factor in human breast cancer.

2.
Cancers (Basel) ; 12(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466418

RESUMO

Although metastasis is the primary cause of death in patients with malignant solid tumors, efficient anti-metastatic therapies are not clinically available currently. Sulfated glycosaminoglycans from marine sources have shown promising pharmacological effects, acting on different steps of the metastatic process. Oversulfated dermatan sulfates from ascidians are effective in preventing metastasis by inhibition of P-selectin, a platelet surface protein involved in the platelet-tumor cell emboli formation. We report in this work that the heparan sulfate isolated from the viscera of the ascidian Phallusia nigra drastically attenuates metastases of colon carcinoma cells in mice. Our in vitro and in vivo assessments demonstrate that the P. nigra glycan has very low anticoagulant and antithrombotic activities and a reduced hypotension potential, although it efficiently prevented metastasis. Therefore, it may be a promising candidate for the development of a novel anti-metastatic drug.

3.
Mem Inst Oswaldo Cruz ; 114: e190088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188952

RESUMO

BACKGROUND: Despite treatment with effective antimalarial drugs, the mortality rate is still high in severe cases of the disease, highlighting the need to find adjunct therapies that can inhibit the adhesion of Plasmodium falciparum-infected erythrocytes (Pf-iEs). OBJECTIVES: In this context, we evaluated a new heparan sulfate (HS) from Nodipecten nodosus for antimalarial activity and inhibition of P. falciparum cytoadhesion and rosetting. METHODS: Parasite inhibition was measured by SYBR green using a cytometer. HS was assessed in rosetting and cytoadhesion assays under static and flow conditions using Chinese hamster ovary (CHO) and human lymphatic endothelial cell (HLEC) cells expressing intercellular adhesion molecule-1 (ICAM1) and chondroitin sulfate A (CSA), respectively. FINDINGS: This HS inhibited merozoite invasion similar to heparin. Moreover, mollusk HS decreased cytoadherence of P. falciparum to CSA and ICAM-1 on the surface of endothelial cells under static and flow conditions. In addition, this glycan efficiently disrupted rosettes. CONCLUSIONS: These findings support a potential use for mollusk HS as adjunct therapy for severe malaria.


Assuntos
Heparitina Sulfato/farmacologia , Merozoítos/efeitos dos fármacos , Moluscos/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Proteínas de Protozoários/efeitos dos fármacos , Reprodutibilidade dos Testes , Fatores de Tempo
4.
Oncogene ; 38(14): 2437-2450, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30531835

RESUMO

Tumor progression is regulated by a complex interplay between neoplastic cells and the tumor microenvironment. Tumor-associated macrophages have been shown to promote breast cancer progression in advanced disease and more recently, in early stage cancers. However, little is known about the macrophage-derived factors that promote tumor progression in early stage lesions. Using a p53-null model of early stage mammary tumor progression, we found that Gas6 is highly expressed in pre-invasive lesions associated with increased infiltrating macrophages, as compared with those with few recruited macrophages. We show that F4/80+CD11b+ macrophages produce Gas6 in premalignant lesions in vivo, and that macrophage-derived Gas6 induces a tumor-like phenotype ex vivo. Using a 3-D co-culture system, we show that macrophage-derived Gas6 activates its receptor Axl and downstream survival signals including Akt and STAT3, which was accompanied by altered E-cadherin expression to induce a malignant morphology. In vivo studies demonstrated that deletion of stromal Gas6 delays early stage progression and decreases tumor formation, while tumor growth in established tumors remains unaffected. These studies suggest that macrophage-derived Gas6 is a critical regulator of the transition from premalignant to invasive cancer, and may lead to the development of unique biomarkers of neoplastic progression for patients with early stage breast cancer, including ductal carcinoma in situ.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Animais , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia
5.
Mem. Inst. Oswaldo Cruz ; 114: e190088, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1012679

RESUMO

BACKGROUND Despite treatment with effective antimalarial drugs, the mortality rate is still high in severe cases of the disease, highlighting the need to find adjunct therapies that can inhibit the adhesion of Plasmodium falciparum-infected erythrocytes (Pf-iEs). OBJECTIVES In this context, we evaluated a new heparan sulfate (HS) from Nodipecten nodosus for antimalarial activity and inhibition of P. falciparum cytoadhesion and rosetting. METHODS Parasite inhibition was measured by SYBR green using a cytometer. HS was assessed in rosetting and cytoadhesion assays under static and flow conditions using Chinese hamster ovary (CHO) and human lymphatic endothelial cell (HLEC) cells expressing intercellular adhesion molecule-1 (ICAM1) and chondroitin sulfate A (CSA), respectively. FINDINGS This HS inhibited merozoite invasion similar to heparin. Moreover, mollusk HS decreased cytoadherence of P. falciparum to CSA and ICAM-1 on the surface of endothelial cells under static and flow conditions. In addition, this glycan efficiently disrupted rosettes. CONCLUSIONS These findings support a potential use for mollusk HS as adjunct therapy for severe malaria.


Assuntos
Plasmodium falciparum , Malária Falciparum , Receptores de Citoadesina , Heparitina Sulfato , Moluscos
6.
PLoS One ; 13(12): e0208550, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533018

RESUMO

Mammary gland development is a complex and dynamic process that occurs mainly postnatally. Ductal elongation and branching morphogenesis are regulated by a plethora of factors, including cytokines, hormones, growth factors and the extracellular matrix. Gas6 is a secreted gamma-carboxylated protein that binds to a family of receptors tyrosine kinase receptors known as the TAMR family (Tyro3, Axl, Mer). Gas6 function in developmental processes has been shown in nervous, reproductive and immune systems. In this study, we found that Gas6 is highly expressed in virgin adult mammary glands but declines during pregnancy and lactation. Specifically, Gas6 is highly expressed in luminal and basal mammary epithelial cells during puberty and adulthood, while TAMR expression is low. Mammary whole mount analysis revealed that Gas6 germline deletion does not impact ductal elongation, branching morphogenesis or terminal end bud formation. Masson's trichrome staining showed that collagen deposition is similar in Gas6-/- mice as compared to wildtype mice. Gas6-/- mammary glands presented an organized luminal and myoepithelial bilayer of cells, and the proportion of mammary stem cells was unchanged in Gas6-/- mammary glands as compared to wildtype. Finally, proliferation of epithelial cells and macrophage number were similar in both groups. These studies suggest that Gas6 is not essential for pubertal mammary gland development in nulliparous mice.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glândulas Mamárias Animais/metabolismo , Animais , Células Epiteliais/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Queratinas/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Puberdade , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
7.
J Mammary Gland Biol Neoplasia ; 23(4): 269-278, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145750

RESUMO

Breast cancer development is a multi-step process in which genetic and molecular heterogeneity occurs at multiple stages. Ductal carcinoma arises from pre-invasive lesions such as atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS), which progress to invasive and metastatic cancer. The feasibility of obtaining tissue samples from all stages of progression from the same patient is low, and thus molecular studies dissecting the mechanisms that mediate the transition from pre-invasive DCIS to invasive carcinoma have been hampered. In the past 25 years, numerous mouse models have been developed that partly recapitulate the histological and biological properties of early stage lesions. In this review, we discuss in vivo model systems of breast cancer progression from syngeneic mouse models to human xenografts, with particular focus on how accurately these models mimic human disease.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Neoplasias Mamárias Animais/patologia , Animais , Mama/patologia , Progressão da Doença , Feminino , Humanos , Camundongos
8.
Front Oncol ; 4: 138, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982845

RESUMO

Galectin-3, the only chimera galectin found in vertebrates, is one of the best-studied galectins. It is expressed in several cell types and is involved in a broad range of physiological and pathological processes, such as cell adhesion, cell activation and chemoattraction, cell cycle, apoptosis, and cell growth and differentiation. However, this molecule raises special interest due to its role in regulating cancer cell activities. Galectin-3 has high affinity for ß-1,6-N-acetylglucosamine branched glycans, which are formed by the action of the ß1,6-N-acetylglucosaminyltransferase V (Mgat5). Mgat5-related changes in protein/lipid glycosylation on cell surface lead to alterations in the clustering of membrane proteins through lattice formation, resulting in functional advantages for tumor cells. Galectin-3 presence enhances migration and/or invasion of many tumors. Galectin-3-dependent clustering of integrins promotes ligand-induced integrin activation, leading to cell motility. Galectin-3 binding to mucin-1 increases transendothelial invasion, decreasing metastasis-free survival in an experimental metastasis model. Galectin-3 also affects endothelial cell behavior by regulating capillary tube formation. This lectin is found in the tumor stroma, suggesting a role for microenvironmental galectin-3 in tumor progression. Galectin-3 also seems to be involved in the recruitment of tumor-associated macrophages, possibly contributing to angiogenesis and tumor growth. This lectin can be a relevant factor in turning bone marrow in a sanctuary for leukemia cells, favoring resistance to therapy. Finally, galectin-3 seems to play a relevant role in orchestrating distinct cell events in tumor microenvironment and for this reason, it can be considered a target in tumor therapies. In conclusion, this review aims to describe the processes of tumor progression and metastasis involving extracellular galectin-3 and its expression and regulation.

9.
Biomed Res Int ; 2013: 852093, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23984412

RESUMO

Breast cancer is defined as a cancer originating in tissues of the breast, frequently in ducts and lobules. During the last 30 years, studies to understand the biology and to treat breast tumor improved patients' survival rates. These studies have focused on genetic components involved in tumor progression and on tumor microenvironment. Heparan sulfate proteoglycans (HSPGs) are involved in cell signaling, adhesion, extracellular matrix assembly, and growth factors storage. As a central molecule, HSPG regulates cell behavior and tumor progression. HS accompanied by its glycosaminoglycan counterparts regulates tissue homeostasis and cancer development. These molecules present opposite effects according to tumor type or cancer model. Studies in this area may contribute to unveil glycosaminoglycan activities on cell dynamics during breast cancer exploring these polysaccharides as antitumor agents. Heparanase is a potent tumor modulator due to its protumorigenic, proangiogenic, and prometastatic activities. Several lines of evidence indicate that heparanase is upregulated in all human sarcomas and carcinomas. Heparanase seems to be related to several aspects regulating the potential of breast cancer metastasis. Due to its multiple roles, heparanase is seen as a target in cancer treatment. We will describe recent findings on the function of HSPGs and heparanase in breast cancer behavior and progression.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Progressão da Doença , Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Feminino , Heparitina Sulfato/química , Humanos , Modelos Biológicos , Metástase Neoplásica
10.
J Biol Chem ; 285(10): 7312-23, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20053999

RESUMO

Heparin-like glycans with diverse disaccharide composition and high anticoagulant activity have been described in several families of marine mollusks. The present work focused on the structural characterization of a new heparan sulfate (HS)-like polymer isolated from the mollusk Nodipecten nodosus (Linnaeus, 1758) and on its anticoagulant and antithrombotic properties. Total glycans were extracted from the mollusk and fractionated by ethanol precipitation. The main component (>90%) was identified as HS-like glycosaminoglycan, representing approximately 4.6 mg g(-1) of dry tissue. The mollusk HS resists degradation with heparinase I but is cleaved by nitrous acid. Analysis of the mollusk glycan by one-dimensional (1)H, two-dimensional correlated spectroscopy, and heteronuclear single quantum coherence nuclear magnetic resonance revealed characteristic signals of glucuronic acid and glucosamine residues. Signals corresponding to anomeric protons of nonsulfated, 3- or 2-sulfated glucuronic acid as well as N-sulfated and/or 6-sulfated glucosamine were also observed. The mollusk HS has an anticoagulant activity of 36 IU mg(-1), 5-fold lower than porcine heparin (180 IU mg(-1)), as measured by the activated partial thromboplastin time assay. It also inhibits factor Xa (IC(50) = 0.835 microg ml(-1)) and thrombin (IC(50) = 9.3 microg ml(-1)) in the presence of antithrombin. In vivo assays demonstrated that at the dose of 1 mg kg(-1), the mollusk HS inhibited thrombus growth in photochemically injured arteries. No bleeding effect, factor XIIa-mediated kallikrein activity, or toxic effect on fibroblast cells was induced by the invertebrate HS at the antithrombotic dose.


Assuntos
Anticoagulantes/química , Anticoagulantes/metabolismo , Artérias , Trombose das Artérias Carótidas/prevenção & controle , Endotélio Vascular , Matriz Extracelular/química , Proteoglicanas de Heparan Sulfato/metabolismo , Proteoglicanas de Heparan Sulfato/uso terapêutico , Animais , Anticoagulantes/isolamento & purificação , Anticoagulantes/uso terapêutico , Antitrombinas/metabolismo , Artérias/efeitos dos fármacos , Artérias/patologia , Artérias/efeitos da radiação , Bivalves/metabolismo , Configuração de Carboidratos , Linhagem Celular , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/efeitos da radiação , Matriz Extracelular/metabolismo , Fator Xa/metabolismo , Inibidores do Fator Xa , Feminino , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/isolamento & purificação , Heparina/metabolismo , Heparina/uso terapêutico , Cofator II da Heparina/metabolismo , Heparina Liase/metabolismo , Humanos , Masculino , Ácido Nitroso/metabolismo , Ratos , Análise Espectral/métodos , Suínos , Trombina/antagonistas & inibidores , Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...