Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 453: 139605, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788641

RESUMO

Minerals are reported to dominate the electrical properties of honey and indicate its botanical and geographical origins. In this study, Electrochemical Impedance Spectroscopy (EIS) was used to assess the relation between mineral elements, electrical properties and botanical origin using three honey varieties - Citrus sp., Eucalyptus sp., and Erica sp. These varieties are identified through pollen analysis and market labelling. Flame atomic absorption and emission spectroscopies were used to quantify the concentrations of eight elements (potassium, sodium, calcium, magnesium, manganese, zinc, copper, and iron). Among all the mineral elements, potassium showed a consistent correlation with impedance. The potassium estimation in honey and standard solutions (calibration curve) had similar sensitivities of 153.43 nF/mM and 132.68 nF/mM, respectively. Additionally, the analysis revealed that potassium dominates the mineral composition, with the other species present in minimal quantities. The EIS technique showed high sensitivity to potassium and other ionisable species, making it possible to classify the botanical origin of these three honey types. The EIS technique proved to be both time and cost effective, yielding a classification rate higher than that achieved by analysing mineral composition.


Assuntos
Espectroscopia Dielétrica , Mel , Potássio , Mel/análise , Mel/classificação , Potássio/análise , Citrus/química , Citrus/classificação
2.
Biochimie ; 171-172: 72-78, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084494

RESUMO

Cartilage acidic protein 1 (CRTAC1) is an extracellular matrix protein of human chondrogenic tissue that is also present in other vertebrates, non-vertebrate eukaryotes and in some prokaryotes. The function of CRTAC1 remains unknown but the protein's structure indicates a role in cell-cell or cell-matrix interactions and calcium-binding. The aim of the present study was to evaluate the in vitro effects of hCRTAC1-A on normal human dermal fibroblasts (NHDF). A battery of in vitro assays (biochemical and PCR), immunofluorescence and a biosensor approach were used to characterize the protein's biological activities on NHDF cells in a scratch assay. Gene expression analysis revealed that hCRTAC1-A protein is associated with altered levels of expression for genes involved in the processes of cell proliferation (CXCL12 and NOS2), cell migration (AQP3 and TNC), and extracellular matrix-ECM regeneration and remodeling (FMOD, TIMP1, FN1) indicating a role for hCRTAC1-A in promoting these activities in a scratch assay. In parallel, the candidate processes identified by differential gene transcription were substantiated and extended using Electric cell-substrate impedance sensing (ECIS) technology, immunofluorescence and cell viability assays. Our findings indicate that hCRTAC1-A stimulated cell proliferation, migration and ECM production in primary human fibroblasts in vitro.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Pele/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Metabolismo Energético , Fibroblastos/citologia , Humanos , Pele/citologia
3.
Biosens Bioelectron ; 145: 111708, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557560

RESUMO

Herein, we describe an electrophysiological based sensor that reproducibly monitors and quantifies in real-time collective migration and the formation of cell-cell junctions by C6 glioma cells seeded on top of electrodes. The signal amplitude and frequency generated by the migrating cells changed over time and these parameters were used to accurately calculate the migration speed. Electrophysiological measurements could also distinguish individual from collective cell migration. The migration of densely packed cells generated strong signals, while dispersed cells showed weak bioelectrical activity. We propose this electrophysiological technique as a cell-based biosensor to gain insight into the mechanisms of cooperative migration of cancer cells. Possible applications include screening for anti-migratory compounds, which may lead to the development of novel strategies for antineoplastic chemotherapy.


Assuntos
Técnicas Biossensoriais , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Glioma/fisiopatologia , Fenômenos Eletrofisiológicos , Glioma/diagnóstico , Humanos
4.
Front Neural Circuits ; 11: 80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109679

RESUMO

Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques.


Assuntos
Astrócitos/fisiologia , Microeletrodos , Animais , Células Cultivadas , Córtex Cerebral/fisiologia , Fenômenos Eletrofisiológicos , Espaço Extracelular/fisiologia , Camundongos Endogâmicos C57BL
5.
Sci Rep ; 7(1): 14284, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079771

RESUMO

Ultra-sensitive electrodes for extracellular recordings were fabricated and electrically characterized. A signal detection limit defined by a noise level of 0.3-0.4 µV for a bandwidth of 12.5 Hz was achieved. To obtain this high sensitivity, large area (4 mm2) electrodes were used. The electrode surface is also micro-structured with an array of gold mushroom-like shapes to further enhance the active area. In comparison with a flat gold surface, the micro-structured surface increases the capacitance of the electrode/electrolyte interface by 54%. The electrode low impedance and low noise enable the detection of weak and low frequency quasi-periodic signals produced by astrocytes populations that thus far had remained inaccessible using conventional extracellular electrodes. Signals with 5 µV in amplitude and lasting for 5-10 s were measured, with a peak-to-peak signal-to-noise ratio of 16. The electrodes and the methodology developed here can be used as an ultrasensitive electrophysiological tool to reveal the synchronization dynamics of ultra-slow ionic signalling between non-electrogenic cells.


Assuntos
Astrócitos/fisiologia , Potenciais da Membrana , Microeletrodos , Animais , Células Cultivadas , Córtex Cerebral/fisiologia , Capacitância Elétrica , Impedância Elétrica , Desenho de Equipamento , Compostos de Ouro , Camundongos Endogâmicos C57BL , Neurofisiologia/instrumentação , Cultura Primária de Células
6.
Sci Adv ; 2(12): e1600516, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28028533

RESUMO

Glioma patients often suffer from epileptic seizures because of the tumor's impact on the brain physiology. Using the rat glioma cell line C6 as a model system, we performed long-term live recordings of the electrical activity of glioma populations in an ultrasensitive detection method. The transducer exploits large-area electrodes that maximize double-layer capacitance, thus increasing the sensitivity. This strategy allowed us to record glioma electrical activity. We show that although glioma cells are nonelectrogenic, they display a remarkable electrical burst activity in time. The low-frequency current noise after cell adhesion is dominated by the flow of Na+ ions through voltage-gated ion channels. However, after an incubation period of many hours, the current noise markedly increased. This electric bursting phenomenon was not associated with apoptosis because the cells were viable and proliferative during the period of increased electric activity. We detected a rapid cell culture medium acidification accompanying this event. By using specific inhibitors, we showed that the electrical bursting activity was prompted by extracellular pH changes, which enhanced Na+ ion flux through the psalmotoxin 1-sensitive acid-sensing ion channels. Our model of pH-triggered bursting was unambiguously supported by deliberate, external acidification of the cell culture medium. This unexpected, acidosis-driven electrical activity is likely to directly perturb, in vivo, the functionality of the healthy neuronal network in the vicinity of the tumor bulk and may contribute to seizures in glioma patients.


Assuntos
Fenômenos Eletrofisiológicos , Glioma/fisiopatologia , Concentração de Íons de Hidrogênio , Neurônios/citologia , Animais , Linhagem Celular Tumoral , Humanos , Rede Nervosa , Ratos , Canais de Sódio/fisiologia
7.
Sci Rep ; 6: 34843, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708378

RESUMO

Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 µVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 µVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations.


Assuntos
Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Animais , Neoplasias Encefálicas/fisiopatologia , Adesão Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Capacitância Elétrica , Impedância Elétrica , Fenômenos Eletrofisiológicos , Glioma/patologia , Glioma/fisiopatologia , Ouro , Humanos , Microeletrodos , Ratos , Razão Sinal-Ruído
8.
Sci Rep ; 6: 33490, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27649784

RESUMO

We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.

9.
Anal Chem ; 82(8): 3239-46, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20334387

RESUMO

Impedance spectroscopy has been proven a powerful tool for reaching high sensitivity in sensor arrays made with nanostructured films in the so-called electronic tongue systems, whose distinguishing ability may be enhanced with sensing units capable of molecular recognition. In this study we show that for optimized sensors and biosensors the dielectric relaxation processes involved in impedance measurements should also be considered, in addition to an adequate choice of sensing materials. We used sensing units made from layer-by-layer (LbL) films with alternating layers of the polyeletrolytes, poly(allylamine) hydrochloride (PAH) and poly(vinyl sulfonate) (PVS), or LbL films of PAH alternated with layers of the enzyme phytase, all adsorbed on gold interdigitate electrodes. Surprisingly, the detection of phytic acid was as effective in the PVS/PAH sensing system as with the PAH/phytase system, in spite of the specific interactions of the latter. This was attributed to the dependence of the relaxation processes on nonspecific interactions such as electrostatic cross-linking and possibly on the distinct film architecture as the phytase layers were found to grow as columns on the LbL film, in contrast to the molecularly thin PAH/PVS films. Using projection techniques, we were able to detect phytic acid at the micromolar level with either of the sensing units in a data analysis procedure that allows for further optimization.


Assuntos
Técnicas Biossensoriais/métodos , Ácido Fítico/química , Impedância Elétrica , Eletrodos , Ouro/química , Ácido Fítico/análise , Poliaminas/química , Polivinil/química , Ácidos Sulfônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...