Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 208: 106291, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333205

RESUMO

BACKGROUND AND OBJECTIVE: Computerized pathology image analysis is an important tool in research and clinical settings, which enables quantitative tissue characterization and can assist a pathologist's evaluation. The aim of our study is to systematically quantify and minimize uncertainty in output of computer based pathology image analysis. METHODS: Uncertainty quantification (UQ) and sensitivity analysis (SA) methods, such as Variance-Based Decomposition (VBD) and Morris One-At-a-Time (MOAT), are employed to track and quantify uncertainty in a real-world application with large Whole Slide Imaging datasets - 943 Breast Invasive Carcinoma (BRCA) and 381 Lung Squamous Cell Carcinoma (LUSC) patients. Because these studies are compute intensive, high-performance computing systems and efficient UQ/SA methods were combined to provide efficient execution. UQ/SA has been able to highlight parameters of the application that impact the results, as well as nuclear features that carry most of the uncertainty. Using this information, we built a method for selecting stable features that minimize application output uncertainty. RESULTS: The results show that input parameter variations significantly impact all stages (segmentation, feature computation, and survival analysis) of the use case application. We then identified and classified features according to their robustness to parameter variation, and using the proposed features selection strategy, for instance, patient grouping stability in survival analysis has been improved from in 17% and 34% for BRCA and LUSC, respectively. CONCLUSIONS: This strategy created more robust analyses, demonstrating that SA and UQ are important methods that may increase confidence digital pathology.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Incerteza
2.
Comput Biol Med ; 108: 371-381, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31054503

RESUMO

Digital pathology imaging enables valuable quantitative characterizations of tissue state at the sub-cellular level. While there is a growing set of methods for analysis of whole slide tissue images, many of them are sensitive to changes in input parameters. Evaluating how analysis results are affected by variations in input parameters is important for the development of robust methods. Executing algorithm sensitivity analyses by systematically varying input parameters is an expensive task because a single evaluation run with a moderate number of tissue images may take hours or days. Our work investigates the use of Surrogate Models (SMs) along with parallel execution to speed up parameter sensitivity analysis (SA). This approach significantly reduces the SA cost, because the SM execution is inexpensive. The evaluation of several SM strategies with two image segmentation workflows demonstrates that a SA study with SMs attains results close to a SA with real application runs (mean absolute error lower than 0.022), while the SM accelerates the SA execution by 51 × . We also show that, although the number of parameters in the example workflows is high, most of the uncertainty can be associated with a few parameters. In order to identify the impact of variations in segmentation results to downstream analyses, we carried out a survival analysis with 387 Lung Squamous Cell Carcinoma cases. This analysis was repeated using 3 values for the most significant parameters identified by the SA for the two segmentation algorithms; about 600 million cell nuclei were segmented per run. The results show that significance of the survival correlations of patient groups, assessed by a logrank test, are strongly affected by the segmentation parameter changes. This indicates that sensitivity analysis is an important tool for evaluating the stability of conclusions from image analyses.


Assuntos
Algoritmos , Carcinoma de Células Escamosas , Núcleo Celular/patologia , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares , Reconhecimento Automatizado de Padrão , Fluxo de Trabalho , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Bases de Dados Factuais , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino
3.
Concurr Comput ; 30(14)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30344454

RESUMO

The Irregular Wavefront Propagation Pattern (IWPP) is a core computing structure in several image analysis operations. Efficient implementation of IWPP on the Intel Xeon Phi is difficult because of the irregular data access and computation characteristics. The traditional IWPP algorithm relies on atomic instructions, which are not available in the SIMD set of the Intel Phi. To overcome this limitation, we have proposed a new IWPP algorithm that can take advantage of non-atomic SIMD instructions supported on the Intel Xeon Phi. We have also developed and evaluated methods to use CPU and Intel Phi cooperatively for parallel execution of the IWPP algorithms. Our new cooperative IWPP version is also able to handle large out-of-core images that would not fit into the memory of the accelerator. The new IWPP algorithm is used to implement the Morphological Reconstruction and Fill Holes operations, which are operations commonly found in image analysis applications. The vectorization implemented with the new IWPP has attained improvements of up to about 5× on top of the original IWPP and significant gains as compared to state-of-the-art the CPU and GPU versions. The new version running on an Intel Phi is 6.21× and 3.14× faster than running on a 16-core CPU and on a GPU, respectively. Finally, the cooperative execution using two Intel Phi devices and a multi-core CPU has reached performance gains of 2.14× as compared to the execution using a single Intel Xeon Phi.

4.
Artigo em Inglês | MEDLINE | ID: mdl-27298591

RESUMO

We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel® Xeon Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP's irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance. However, SIMD atomic instructions are not supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use cases. Our results show performance improvements of up to 5.63× on top of the original IWPP due to vectorization. Moreover, the new IWPP achieves speedups of 45.7× and 1.62×, respectively, as compared to efficient CPU and GPU implementations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA